Coordinate systems adapted to constants of motion

G.F. Torres del Castillo


We present some examples of mechanical systems such that given $n$ constants of motion in involution (where $n$ is the number of degrees of freedom), we can identify a coordinate system in which the Hamilton--Jacobi equation is separable (or $R$-separable), with the separation constants being the values of the given constants of motion. Analogous results for the Schrödinger equation are also given.


Hamilton--Jacobi equation; constants of motion; separation of variables; -separability; Schrödinger equation

Full Text:



  • There are currently no refbacks.

Revista Mexicana de Física

ISSN: 2683-2224 (on line), 0035-001X (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840.