Generation of solutions of the Hamilton--Jacobi equation

G.F. Torres del Castillo


It is shown that any function $G(q_{i}, p_{i}, t)$, defined on the extended phase space, defines a one-parameter group of canonical transformations which act on any function $f(q_{i}, t)$, in such a way that if $G$ is a constant of motion then from a solution of the Hamilton--Jacobi (HJ) equation one obtains a one-parameter family of solutions of the same HJ equation. It is also shown that any complete solution of the HJ equation can be obtained in this manner by means of the transformations generated by $n$ constants of motion in involution.


Hamilton--Jacobi equation; canonical transformations; constants of motion

Full Text:



  • There are currently no refbacks.

Revista Mexicana de Física

ISSN: 2683-2224 (on line), 0035-001X (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840.