Performance characteristics of GaN/Al0.2Ga0.8N quantum dot laser at L=100Å

Halima Bouchenafa, Boucif Benichou, Badra Bouabdallah


In this paper, a theoretical model is used to study the optical gain characteristics of  quantum dot lasers. The model is based on the density matrix theory of semiconductor lasers with relaxation broadening. The effect of doping with varying the side lengths of the box in the structure is taken into account. A comparative study of the gain spectra of p-doped, undoped and n-doped structures of  cubic quantum-dot (QD) laser respectively, is presented for various side lengths. The variation of peak gain on carrier density is also presented. The effect of side length on the variation in modal gain versus current density is plotted too. The results indicate that the p type doping is efficient to reach a better optical gain value, and to achieve low threshold current densities compared with undoped and  n-doped structures, and the optimum value for quantum dot width to achieve the lower threshold current density for the three cases is L=100A .





quantum dot, optical gain, III-nitride semiconductors, laser threshold.

Full Text:




  • There are currently no refbacks.

Revista Mexicana de Física

ISSN: 0035-001X

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52-55) 5622-4946, (52-55) 5622-4840.