On geometro dynamics in atomic stationary states

G. Gómez i Blanch, and M.J. Fullana i Alfonso


In a previous paper [G.Gomez Blanch and M.J.Fullana, 2017] we dened, in the frame of a geometro-dynamic approach, a metric corresponding to a lorentzian spacetime were the electron stationary trajectories in an hydrogenoid atom, derived from the de Broglie-Bohm model, are geodesics. In this paper we want to complete this purpose: we will determinate the remaining relevant geometrical elements of that approach and we will calculate the energetic density component of the energy-momentum tensor. We will discuss the meaning of the obtained results and their relationship with other geometro-dynamic approaches.
Furthermore, we will derive a more general relationship between the lorentzian metric tensor and the wave function for general stationary states. The electron description by the wave function ψ in the Euclidean space and time is shown equivalent to the description by a metric tensor in an lorentzian manifold. In our approach, the particle acquires a determining role over the
wave function, in a similar manner as the wave function determines the movement of the particle. This dialectic approach overcomes the de Broglie-Bohm model. And furthermore, a non local element (the quantum potential) is introduced in the model, that therefore goes beyond the relativistic locality.


Wave function; metric tensor; curvature; quantum potential; energy moment tensor and lorentzial manifold; numerical methods

Full Text:


DOI: https://doi.org/10.31349/RevMexFis.65.148


  • There are currently no refbacks.

Revista Mexicana de Física

ISSN: 0035-001X

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52-55) 5622-4946, (52-55) 5622-4840. rmf@ciencias.unam.mx