A nonextensive wavelet $(q,q')$-entropy for $1/f^{\alpha}$ signals

J. Ramírez-Pacheco, L. Rizo-Domínguez, J.A. Trejo-Sánchez, J. Cortez-González


This paper proposes a nonextensive wavelet $(q,q')$-entropy computed as a wavelet-domain generalization of the time-domain $(q,q')$ entropy of Borges and obtains a closed-form expression of this measure for the class of $1/f^{\alpha}$ signals. Theoretical wavelet $(q,q')$-entropy planes are obtained for these signals and the effect of parameters $q$ and $q'$ on the shape and behaviour of these wavelet entropies are discussed with sufficient detail. The relationship of this entropy with Shannon and Tsallis entropies is studied and some applications of the proposed two-parameter wavelet entropy for the analysis/estimation of $1/f$ signals are outlined.


Nonextensive entropies; wavelet information tools; signals

Full Text:



  • There are currently no refbacks.

Revista Mexicana de Física

ISSN: 2683-2224 (on line), 0035-001X (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840. rmf@ciencias.unam.mx