Optical soliton solutions of the Ginzburg-Landau equation with conformable derivative and Kerr law nonlinearity

Behzad Ghanbari, Francisco Gomez

Abstract


By using the generalized exponential rational function method we obtain new periodic and hyperbolic soliton solutions for the conformable Ginzburg-Landau equation with Kerr law nonlinearity. The conformable derivative was considered to obtain the exact solutions under constraint conditions. To determine the solution of the model, the method uses the generalization of the exponential rational function method. Numerical simulations are performed to confirm the efficiency of the proposed method.

Keywords


Soliton solutions, Generalized exponential rational function method, Ginzburg Landau equation, Conformable time fractional derivative, Kerr law nonlinearity.

Full Text:

PDF


DOI: https://doi.org/10.31349/RevMexFis.65.73

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física

ISSN: 0035-001X

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52-55) 5622-4946, (52-55) 5622-4840. rmf@ciencias.unam.mx