Conformal cyclic evolution of phantom energy dominated universe

S. Natarajan, R. Chandramohan, R. Swminathan


From the Wheeler Dewitt solutions, the scale factor of the initial universe is discussed. In this study scale factors from Wheeler Dewitt solutions, loop quantum gravity, and phantom energy dominated stages are compared. Certain modifications have been attempted in scale factor and quantum potentials driven by canonical quantum gravity approaches. Their results are discussed in this work. Despite increment of phantom energy density avoidance of big rip is reported. Scale factors predicted from various models is discussed in this work. Relationship between scale factors and smooth continuation of aeon is discussed by the application of conformal cyclic cosmology. Quantum potentials for various models are correlated and a correction parameter is included on the cosmological constant. Phantom energy dominated, final stage non-singular evolution of the universe is reported. Eternal increment of phantom energy density without interacting with dark matter is reported for the consequence of evolution of the future universe. Also, the non-interacting solutions of phantom energy and dark matter are explained. As the evolution continues even after the final singularity is approached, the validity of conformal cyclic cosmology is predicted. Non zero values for the scale factor for the set of eigenvalues are reported with a graph


Phantom energy ; Wheeler Dewitt theory; Scale factor quantization; Loop quantum cosmology ; Cosmological constant;Non interacting phantom comsology

Full Text:




  • There are currently no refbacks.

Revista Mexicana de Física

ISSN: 2683-2224 (on line), 0035-001X (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840.