Fake calibration attack using a beam sampler in a continuous variable-quantum key distribution system

J. A. Lopez-Leyva, A. Talamantes-Alvarez, E. A. Mejia, J. Estrada, M. Ponce Camacho, V. Ramos Garcia, L. Casemiro Oliveira

Abstract


A Fake Calibration Attack process for a Continuous Variable-Quantum Key Distribution system using a Beam Sampler is presented. The Fake Calibration Attack allows a calibration that balances the Standard Quantum Limit for all the optical path in the experiment (differential Standard Quantum Limit is ≈ 0.39 dB) allowing Eve to acquire ≈ 0.0671 for a particular information quadrature which establishes a Quantum Bit Error Rate ≈ 5.8%. As a final result, the balancing of the Standard Quantum Limit for both states of polarization signals allows maintaining the overall Quantum Bit Error Rate at a particular value ≈ 3%, which implies an important basis for detecting a potential spy considering the minimum Quantum Bit Error Rate.


Keywords


Quantum cryptography, unbalanced optical paths, state of polarization, calibration attack

Full Text:

PDF

References


G. Kołaczek and J. Mizera-Pietraszko, J. Inform. Telecommun., 2 (2018) 428.

T. Zhou, et. al., Secur. Commun. Netw., 2018 (2018)1.

T. Mor and V. Roychowdhury, Quantum Communication, Computing, and Measurement 3, (Springer, Boston, MA, 2002), pp. 277–284.

Y. Z. Law, L. P. Thinh, J.-D. Bancal, and V. Scarani, J. Phys. A: Math. Theor., 47 (2014) 424028.

F. Hufnagel, et. al., Optics Express, 27 (2019) 26346.

E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, npj Quantum Inform., 2 (2016) 1.

S. L. Braunstein and S. Pirandola, Phys. Rev. Lett., 108 (2012) 130502.

D. Gottesman, Hoi-Kwong Lo, N. Lutkenhaus, and J. Preskill, Proceedings International Symposium on Information Theory, 2004.

P. J. Coles, E. M. Metodiev, and N. Lütkenhaus, Nat. Commun., 7 (2016) 11712.

S. Arnon, et. al., Quantum Communications and Quantum Imaging XVI, (2018) 107710T.

P. Kumar and R. J. Clifton, J. Appl. Phys., 48 (1977) 1366.

Z. Qu and I. B. Djordjevic, Photon. J., 10 (2018) 1.

F. Karinou, et. al., Photon. Techn. Lett., 30 (2018) 650.

H. H. Brunner, et. al., Optical Fiber Communication Conference (2019).

J.A. Lopez-Leyva, et. al., Opt. Appl., XLVII (2017) 411.

J.A. Lopez-Leyva J.A. and A. Arvizu-Mondragon, Microw. Opt. Techn. Lett., 57 (2015) 1349.

R. Filip, Phys. Rev. A, 67 (2003) 042111.

A.R. Dixon, et. al., Sci. Rep, 7 (2017) 1978.

N. Jain, et. al., Contemp. Phys., 57 (2016) 366.

S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Nat. Commun., 8 (2017) 1.




DOI: https://doi.org/10.31349/RevMexFis.66.228

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física

ISSN: 2683-2224 (on line), 0035-001X (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840. rmf@ciencias.unam.mx