Analysis of fractional duffing oscillator

S.C. Eze

Abstract


In this contribution, a simple analytical method (which is an elegant combination of a well known methods; perturbation method and Laplace method) for solving non-linear and non-homogeneous fractional differential equations is pro- posed. In particular, the proposed method was used to analysed the fractional Duffing oscillator.The technique employed in this method can be used to analyse other nonlinear fractional differential equations, and can also be extended to non- linear partial fractional differential equations.The performance of this method is reliable, effective and gives more general solution.

Keywords


Fractional calculus, fractional Duffing oscillator, analytical method.

Full Text:

PDF

References


J. F. Gomeze-Aguilar, J. J. Rosale-Garcia, J.J. Bernal-Alvarado, T. Cordova-Fraga and R. Guzman-Cabrera, Fractional Mechanical Oscillators. Revista Mexicana de Fisica, 58, 348 352,(2012).

A Mohammed, A.H. Mohamed and I.S.Mohammed, An Efficient Series Solu- tion for Fractional Differential Equations. Abstract and Applied Analysis, (2014), http://dx.doi.org/10.1155/2014/891837.

S. C. Eze and M.O. Oyesanya, Fractional Order Climate Change Model in a Pacific Ocean. Journal of Fractional Calculus and Applications.10 (1), 10-23,(2019).

S. C. Eze and M.O. Oyesanya, Fractional Order on the Impact of Climate Change with Dominant Earth’s Fluctuations. Math. Clim. Weather Forecast. 5, 1-11,(2019).

A.E Mohamed and S.A. Amnah, Stochastic Response of Duffing Oscillator with Fractional or Variable-order Damping. Journal of Fractional Calculus and Applications 4(2), 357-366, (2013).

B. Ahmet, G. Ozkan, H. Ali and B. Anjan, Solving Nonlinear Fractional Differential Equations Using Exp-Function and ( GG )-Expansion Methods. Rom. Journ, 60(1-3),360-379,(2014).

T. Djurdjica, T. Arpal and T. Aleresandur, On the Solutions of Fuzzy Fractional Differential Equation. TWMS J. App. Eng. Math., 4(1), 98-103, (2014).

R.H. Rand, S. M. Sah and M.K. Suchorsky, Fractional Mathieu Equation. Proceedings of ASME2010 International Design Engineering Technical Conference IDETC/CIE2010, 1-9, (2010).

Y. Yin, Solving Nonlinear Multi-Order Fractional Differential Equation Using Legendre Pseudo- Spectral Method. Scientific Research, 4, 113-118, (2013).

G. Pranay and T.A. Rubayyi, Solutions of Fractional Differential Equations by SumuduTransform and Variational Iteration Method. Journal of Nonlinear Science and Applications, 9, 1944-1951,

(2016).

M. O. Oyesanya, Stability analysis of fractional duffing oscillator 1. Trans. of NAMP, 1, 133-150, (revised in 2, 325-342), (2015).

H. Jafari, C.M. Khalique and M. Nazari, Application of the Laplace Decomposition method for Solving Linaer and Nonlinear Fractional Diffusion-Wave Equations. Applied Mathematical Letter,24,1799-1805, (2011).

A. Okasha El-Nady Maha and M.A. Lashin, Approximate Solution of Nonlinear Duffing Oscilla- tor Using Taylor Expansion. Journal of Mechanical Engineering and Automation, 6(5),110-116,

(2016).

R. Venkatesh, C. Subhadeep and R. Asok, Estimation of Slowly Varying Parameters in Nonlinear Systems via Symbolic Dynamic Filtering. Signal Processing, 88,339-348, (2008).

M. Moshre-Torbati and J.K. Hammond, Physical and Geometrical Interpretation of Fractional Operators,335B,1077-1086,(1998).

R. Bojanic and E. Seneta, Slowly Varying Functions and Asymptotic Relations. Journal of Math- ematical Analysis and Applications, 34,302-315,(1971).




DOI: https://doi.org/10.31349/RevMexFis.66.187

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física

ISSN: 2683-2224 (on line), 0035-001X (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840. rmf@ciencias.unam.mx