Study of the critical probability of percolation in a 3D system with pores of random radius for variable grids

G. Medina, Y. Y. Calderón, G. Burlak, J. A. Hernández

Abstract


We numerically study the percolation in 3D porous materials, populated by pores with random sizes at 3D grid of variable sizes. We identify the clusters for each grid as well the infinite cluster that is defined by the critical probability through the neighborhood hybrid structure method. Also we determine the characteristic size of each cluster in the material as well the volume of the infinite cluster that allows optimizing the percolation step at our simulation. In this work several tests were performed by variation the size of the grid. This allows us to determine the optimal size and how it affects the percolation by the simulating grids. Our main results show that in systems with pores having random radius the critical probability increases when size of grid L>40 (that correspond to typical size system about 4000 nm) with respect of the inform pores case.


Keywords


Clustering, Percolation, Pores, Grid

Full Text:

PDF

References


A. Klemm, H.P. Müller, R. Kimmich, Phys. Rev. E 55 (1997) 4413.

G. Burlak, G. Medina-Angel, PIER. 74(2018) 77.

A. Oleinikova , I. Brovchenko, A. Geiger, B.Guillot, J. Chem. Phys. 117(2002) 3296.

L. Lu, R. Capek, A.Kornowski, N. Gaponik, A. Eychmüller, Angew. Chem. Int. 44(2005) 5997.

O.D. Velev, P.M. Tessier, A.M. Lenhoff, E.W. Kaler, Nature 401(1999) 548.

R. Bleta, A. Lannoy, C. Machut, E. Monier, A. Ponchel, Langmuir 30(2014) 11812.

T.D. Nguyen, C.T. Dinh, T.O. Do, Chem. Commun. 51(2015) 624.

J.L. Figueiredo, Surface and Coatings Technology 350(2018) 307.

B.Jang,K. Yang, B. Quan, Y. Piao, Mat. Lett. 104(2013) 68.

L. Zhang, K. Chen, S. Wang, S. Chen, S. Niu, Z. Wang, P. Du, Mat. Lett. 233(2018) 306.

S. Kirkpatrick. Rev. Mod. Phys. 45(1973) 574.

H.R. Seung, B.C. Hong, K. Seil , T.K. Young, L. Jimin , R.P Kee, H.C. Yong, Comp. Sci. Tech. 165(2018) 1.

F. Körmann, A. Dick, T. Hickel , J. Neugebauer, Phys. Rev. B. 81(2010) 134425.

G. Wang, C. Wang, F. Zhang, X. Yu, Z. Faling, Y.Xiaozhu, Comp. Mat. Sci. 50(2018) 102.

L. Jianjun, C. Huisu, Pow. Tec. 335(2018) 388.

J.F. Gouyet, M. Rosso, Phys. A: Statistical Mechanics and its Applications. 357(2005) 86.

P. Timonin, Physica A. 492(2018) 2292.

T. Pak, I.B. Butler, S. Geiger, M.I.van Dijke, K.S. Sorbie, PNAS. 112(2015) 1947.

M. Rosso, J.F. Gouyet, B. Sapoval, Phys. Rev. Lett. 57(1986) 3195.

D. Wilkinson, J. F. Willemsen, J. Phys. A: Math. Gen. 16(1983) 3365.

P. Sotta, D. Long, Eur. Phys. J. E. 11(2003) 375.

R.M. Bradley, P.N. Strenski, J.M. Debierre, Phys. Rev. B. 44(1991) 76.

A.Y. Smolin, N.V. Roman, I.S. Konovalenko, G.M. Eremina, S.P. Buyakova, S.G. Psakhie, Eng. Frac. Mech. 130(2014) 53.

M. Franceschetti, O. Dousse, N.C. David, P. Thiran, IEEE TIT. 53(2007) 1009.




DOI: https://doi.org/10.31349/RevMexFis.66.315

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física

ISSN: 2683-2224 (on line), 0035-001X (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840. rmf@ciencias.unam.mx