Generalities on finite element discretization for fractional pressure diffusion equation in the fractal continuum

H. D. Sánchez Chávez, C. A. López-Ortiz, and L. Flores-Cano


In this study we explore the application of the novel fractional calculus in fractal continuum (FCFC), together with the finite element method (FEM), in order to analize explicitly how these differential operators act in the process of discretizing the generalized fractional pressure diffusion equation for a three-dimensional anisotropic continuous fractal flow. The master finite element equation (MFEE) for arbitrary interpolation functions is obtained. As an example, MFEE for the case of a generic linear tetrahedron in $\mathbb{R}^3$ is shown. Analytic solution for the spatial variables is determined over a canonical tetrahedral finite element in global coordinates.


Finite Element, Fractional Calculus in Fractal Continuum, Anisotropic Continous Fractal Flow, Fractional Pressure Diffusion Equation, Continuum Mechanics.

Full Text:




  • There are currently no refbacks.

Revista Mexicana de Física

ISSN: 2683-2224 (on line), 0035-001X (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840.