Dynamics of neutrino wave packet in the Tachyon-like Dirac equation

L. Nanni

Abstract


In this study the tachyon-like Dirac equation, formulated by Chodos to describe superluminal neutrino, is solved. The analytical solutions are Gaussian wave packets obtained using the envelope method. It is shown that the superluminal neutrino behaves like a pseudo-tachyon, namely a particle with subluminal velocity and pure imaginary mass that fulfils the energy-momentum relation typical of classical tachyons. The obtained results are used to prove that the trembling motion of the particle position around the median, known as Zitterbewegung, also takes place for the superluminal neutrino, even if the oscillation velocity is always lower than the speed of light. Finally, the pseudo-tachyon wave packet is used to calculate the probability of oscillation between mass states, obtaining a formula analogous to the one obtained for the ordinary neutrino. This suggest that in the experiments concerning neutrino oscillation is not possible to distinguish tachyonic neutrinos from ordinary ones.

Keywords


Dirac equation; superluminal neutrino; mass oscillation; Zitterbewegung

Full Text:

PDF

References


F.W. Stecker and S.T. Scully, Phys. Rev. D 90 (2014) 043012.

M Antonello et al., Phys. Lett. B 711 (2012) 270-275.

E. Bertuzzo et al., Phys. Rev. Lett., 121 (2018) 241801.

E. Trojan, arXiv:1112.2689.

U.D. Jentschura, I. Nadori and R. Ehrlich, J. Phys. G: Nucl. Part. Phys. 44 (2017) 105201.

U.D. Jentschura et al., Eur. Phys. J. C 72 (2012) 1894.

R. Valentim, J.E. Horvath and E.M. Rangel, Int. J. Mod. Phys. Conf. Ser. 45 (2017) 1760040.

G. Cacciapaglia, A. Deandrea and L. Panizzi, J. High Energ. Phys. 137 (2011) 1-24.

H. Genreith, arXiv:1112.0353.

J. Ellis, Nucl. Phys. A 827 (2009) 187-198.

A.G. Cohen and S.L. Glashow, Phys. Rev. Lett. 107 (2011) 181803.

D.C. Lu et al., Phys. Rev. Lett. 45 (1980) 1066-1069.

V.F. Perepelitsa, T. Ekelof, A. Ferrer and B.R. French, arXiv:2001.08576.

O.M. Benialuk and E.C.G. Surdashan, Nature 223 (1969) 386.

O.M. Benialuk and E.C.G. Surdashan, Phys. Today 22 (1969) 43.

G. Feinberg, Phys. Rev. 159 (1967) 1089-1105.

G.D. Maccarone and E. Recami, Lett. Nuovo Cimento 34 (1982) 251-256.

A. Chodos, A. Hauser and and V.A. Kostelecky Phys. Lett. B 150 (1985) 431-435.

S. Tanaka, Prog. Theor. Phys. 24 (1960) 177-200.

P. Dirac, Phys. Z. Sowjet. 3 (1933) 64-72.

U.D. Jentschura, B.J. Wundt, J. Phys. A: Math. Theor. 45 (2012) 444017.

R.L. Liboff, Introductory Quantum Mechanics, Fourth Edition. San Francisco, CA: Addison Wesley, pp. 156-157 (2003).

G. Salesi, Int. J. Mod. Phys. A 12 (1997) 5103-5122.

E. Schrödinger, Sitz. Preuss. Akad. Wiss. Phys. Math. Kl. 24 (1930) 418-428.

E. Akhmedov, arXiv:1901.05232.

R.L. Dave and K.C. Hines, Aust. J. Phys. 45 (1992) 591-620.

A. Salam, Theoretical Physics – Lectures Presented at the Seminar on Theoretical Physics Organized by International Atomic Energy Agency, Published by IAEA – Vienna (1963). Book 1 59-82.

E. Recami, M.Z. Rached, Localized Waves, Edited by Hugo E. Hernandez-Figueroa, John Wiley & Sons, Inc. (2008).

S.T. Park, Phys. Rev. A 86 (2012) 062105.

P. Caban, J. Rembielinski, K.A. Smolinski and Z. Walczak, Found. Phys. Lett. 19 (2006) 619-623.

J.W.F. Valle, J. Phys. Conf. Ser. 53 (2006) 473-505.

B. Thaller, arXiv:quant-ph/049079.

U.D. Jentschura, Cent. Eur. J. Phys. 10 (2012) 749-762.

K.H. Knuth, AIP Conf. Proc. 1641 (2015) 588.




DOI: https://doi.org/10.31349/RevMexFis.66.424

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física

ISSN: 2683-2224 (on line), 0035-001X (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840. rmf@ciencias.unam.mx