Theoretical study of the electron correlation and excitation effects on energy distribution in photon impact ionization

V. Petrovic, K. Isakovic, and H. Delibasic


We performed a detailed theoretical study of the electron correlation and core excitation effects on the energy distribution of the ejected electrons in the process of photon impact tunnel ionization. We used the Landau-Dykhne approach to obtain analytical formulas for the transition rate and the energy distribution with included these effects. We have limited ourselves to a non-relativistic domain, in which the rate and distribution are determined by electrical component of the laser field while the influence of magnetic can be neglected. We observed helium and helium like atoms. We have shown that the tunneling ionization mechanism may be understood as the combination of mentioned processes. We considered the case of a monochromatic wave with an elliptically polarized laser field. We compared our results with experimental and shown that ellipticity plays an important role and that inclusion of additional processes significantly influences the transition rate, as well as the energy distribution of the ejected photoelectrons.


Tunnel ionization; electron correlation; core excitation; energy distribution

Full Text:




  • There are currently no refbacks.

Revista Mexicana de Física

ISSN: 0035-001X

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52-55) 5622-4946, (52-55) 5622-4840.