Maxwellian evolution equations along the uniform optical fiber in Minkowski space

T. Körpınar, R. Cem Demirkol, Z. Körpınar, V. Asil

Abstract


We firstly discuss the geometric phase rotation for an electromagnetic wave traveling along the optical fiber in Minkowski space. We define two types of novel geometric phases associated with the evolution of the polarization vectors in the normal and binormal directions along the optical fiber by identifying the normal-Rytov parallel transportation law and binormal-Rytov parallel transportation law and derive their relationships with the new types of Fermi-Walker transportation law in Minkowski space. Then we describe a novel approach of solving Maxwell's equations in terms of electromagnetic field vectors and geometric quantities associated with the curved path characterizing the path uniform optical fiber by using the traveling wave transformation method. Finally, we investigate that electromagnetic wave propagation along the uniform optical fiber admits an interesting family of Maxwellian evolution equation having numerous physical and geometric applications for anholonomic coordinate system in Minkowski space

Keywords


Maxwell's equations; wave propagation; optical fiber; evolution equation; traveling wave hypothesis.

Full Text:

PDF

References


A.M. Smith, Appl. Opt. 17 (1978) 52.

J.N. Ross, Opt. Quantum Electron. 16 (1984) 455.

A. Tomita, Y. Chiao, Phys. Rev. Lett. 57 (1986) 937.

R.Y. Chiao, Y.S. Wu, Phys. Rev. Lett. 57 (1986) 933.

F.D.M. Haldane, Optics Lett. 11 (1986) 730.

T. Körpınar, R.C. Demirkol, J. Mod. Optics. 66 (2019) 857.

T. Körpınar, R.C. Demirkol, Z. Körpınar, Eur. Phys. J. D. 73 (2019) 203.

T. Körpınar, R.C. Demirkol, Z. Körpınar, Int. J. Geom. Methods M. 16 (2019) 1950117.

T. Körpınar, R.C. Demirkol, Z. Körpınar, Rev. Mex. Fis. 65 (2019) 626.

T. Körpınar, R.C. Demirkol, Optik. 200 (2020) 163334.

R. Betchov, J. Fluid Mech. 22 (1965) 471.

L.D. Rios, Rend. Circ. Mat. Palermo. 22 (1906) 117.

W. Schief, Phys. Plasmas. 10 (2003) 2677.

W.K. Schief, C. Rogers, J. Geom. Phys. 54 (2005) 286.

H. Hasimoto, J. Fluid Mech. 51 (1972) 293.

E.M. Frins, W. Dultz, J. Lightwave Technol. 15 (1997) 144.

O. Yamashita, Opt. Commun. 285 (2012) 3061.




DOI: https://doi.org/10.31349/RevMexFis.66.431

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física

ISSN: 2683-2224 (on line), 0035-001X (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840. rmf@ciencias.unam.mx