First-principles study of the structural, electronic, and elastic properties of Sc2SiX (X=C, N)

M. Mebrek, M. Berber, B. Doumi, A. Mokaddem

Abstract


Using ab-initio calculations, we studied the structural, elastic, and electronic properties of Sc2SiX compounds with, (X=C, N). The negative formation energy and the positive cohesive energy indicate that these compounds are energetically stable and can be synthesized in normal conditions. Sc2SiC and Sc2SiN compounds are mechanically stable, estimated by the individual elastic constants. Elastic constants and modulus increase when C is substituted by N. The elastic anisotropy in Sc2SiC is high compared to Sc2SiN. Both nanolaminates are fragile in nature. Sc2SiC is more conductive than Sc2SiN. The calculated electron band structures and the density of states imply that the chemical bond in two compounds is a combination of covalent, ionic, and metallic nature. The main factors governing the electronic properties are the hybrid states Sc- 3d, Si-3p, and C -2p and the bond (p-d) stabilizes the structure. Fermi's surface characteristics have been studied for the first time, which are changed when replacing N by C. Based on the estimate of the total energy, we conclude that the replacement of C by N will lead to a stabilization of the hexagonal structure and a decrease of the metallic support.


Keywords


MAX phases, ab-initio calculations, structural properties, electronic properties, elastic properties.

Full Text:

PDF

References


V.H. Nowotny, Strukturchemie einiger verbindungen der übergangsmetalle mit den elementen C, Si, Ge, Sn, Prog. Solid State Chem. 5 (1971) 27–70.

P. Eklund, M. Beckers, U. Jansson, H. Högberg, L. Hultman, The Mn+ 1AXn phases: Materials science and thin-film processing, Thin Solid Films. 518 (2010) 1851–1878.

J.M. Schneider, D. Music, Z. Sun, Effect of the valence electron concentration on the bulk modulus and chemical bonding in Ta 2 AC and Zr 2 AC (A= Al, Si, and P), (2005).

M.W. Barsoum, The MN+ 1AXN phases: A new class of solids: Thermodynamically stable nanolaminates, Prog. Solid State Chem. 28 (2000) 201–281.

M. Mebrek, A. Mokaddem, B. Doumi, A. Yakoubi, A. Mir, A Novel Theoretical Study of Elastic and Electronic Properties of M 2 CdC (M= Zr, Hf, and Ta) MAX Phases., Acta Phys. Pol. A. 133 (2018).

A. Bouhemadou, Structural and elastic properties under pressure effect of Hf2AlN and Hf2AlC, High Press. Res. 28 (2008) 45–53.

M.W. Barsoum, T. El‐Raghy, Synthesis and characterization of a remarkable ceramic: Ti3SiC2, J. Am. Ceram. Soc. 79 (1996) 1953–1956.

J.M. Schneider, R. Mertens, D. Music, Structure of V 2 Al C studied by theory and experiment, J. Appl. Phys. 99 (2006) 13501.

I. Kero, R. Tegman, M.-L. Antti, Phase reactions associated with the formation of Ti3SiC2 from TiC/Si powders, Ceram. Int. 37 (2011) 2615–2619.

T. El‐Raghy, M.W. Barsoum, Processing and mechanical properties of Ti3SiC2: I, reaction path and microstructure evolution, J. Am. Ceram. Soc. 82 (1999) 2849–2854.

Z. Sun, Y. Zhou, M. Li, Oxidation behaviour of Ti3SiC2-based ceramic at 900–1300° C in air, Corros. Sci. 43 (2001) 1095–1109.

Z.M. Sun, Progress in research and development on MAX phases—a family of metallic ceramics, Int Mater Rev. 56 (2011) 143–166.

K. Schwarz, P. Blaha, G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences, Comput. Phys. Commun. 147 (2002) 71–76.

P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, WIEN2k: An APW+ lo program for calculating the properties of solids, J. Chem. Phys. 152 (2020) 74101.

J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B. 45 (1992) 13244.

W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133.

H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188.

I.R. Shein, A.L. Ivanovskii, Structural, elastic, and electronic properties of new 211 MAX phase Nb2GeC from first-principles calculations, Phys. B Condens. Matter. 410 (2013) 42–48.

F.D. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. U. S. A. 30 (1944) 244.

G. Hug, M. Jaouen, M.W. Barsoum, X-ray absorption spectroscopy, EELS, and full-potential augmented plane wave study of the electronic structure of Ti 2 Al C, Ti 2 Al N, Nb 2 Al C, and (Ti 0.5 Nb 0.5) 2 Al C, Phys. Rev. B. 71 (2005) 24105.

A. Yakoubi, O. Baraka, B. Bouhafs, Structural and electronic properties of the Laves phase based on rare earth type BaM2 (M= Rh, Pd, Pt), Results Phys. 2 (2012) 58–65.

H.R. Schober, P.H. Dederichs, Phonon States of Elements. Electron States and Fermi Surfaces of Alloys · Sc: Datasheet from Landolt-Börnstein - Group III Condensed Matter · Volume 13A: “Phonon States of Elements. Electron States and Fermi Surfaces of Alloys” in SpringerMaterials (https, (n.d.). https://doi.org/10.1007/10201666_38.

D. Strauch, Si: phase diagram, phase transition: Datasheet from Landolt-Börnstein - Group III Condensed Matter · Volume 44D: “New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors” in SpringerMateri, (n.d.). https://doi.org/10.1007/978-3-642-14148-5_357.

S.I. Sukhoruchkin, Z.N. Soroko, Atomic Mass and Nuclear Binding Energy for N-33 (Nitrogen): Datasheet from Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms · Volume 22A: “Nuclei with Z = 1 - 54” in SpringerMaterials (https://doi.org/10.1007/978-3-540-69945-3_119), (n.d.). https://doi.org/10.1007/978-3-540-69945-3_119.

D. Strauch, C: crystal structure, lattice parameters: Datasheet from Landolt-Börnstein - Group III Condensed Matter · Volume 44D: “New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors” in SpringerM, (n.d.). https://doi.org/10.1007/978-3-642-14148-5_156.

M. Mebrek, A. Mokaddem, F. Bouasria, B. Doumi, A. Mir, A. Yakoubi, A. Boudali, Theoretical Investigation of Electronic Structures, Elastic, and Magnetic Properties of Rh2CrGe Full-Heusler Alloy, Acta Phys. Pol. A. 136 (2019).

A. Yakoubi, H. Mebtouche, M. Ameri, B. Bouhafs, Structure and Bonding of Nanolayered Ternary Phosphides, Mater. Sci. Appl. 2 (2011) 1383.

A. Bouhemadou, Calculated structural, electronic and elastic properties of M 2 GeC (M= Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W), Appl. Phys. A. 96 (2009) 959–967.

M. Born, On the stability of crystal lattices. I, in: Math. Proc. Cambridge Philos. Soc., Cambridge University Press, 1940: pp. 160–172.

M.A. Ali, M.M. Hossain, N. Jahan, A. Islam, S.H. Naqib, Newly synthesized Zr2AlC, Zr2 (Al0. 58Bi0. 42) C, Zr2 (Al0. 2Sn0. 8) C, and Zr2 (Al0. 3Sb0. 7) C MAX phases: a DFT based first-principles study, Comput. Mater. Sci. 131 (2017) 139–145.

I.R. Shein, A.L. Ivanovskii, Structural, elastic, electronic properties and Fermi surface for superconducting Mo2GaC in comparison with V2GaC and Nb2GaC from first principles, Phys. C Supercond. 470 (2010) 533–537.

M.S. Islam, A. Islam, Structural, elastic, electronic and optical properties of a new layered-ternary Ta4SiC3 compound, Phys. B Condens. Matter. 406 (2011) 275–279.

J. Wang, J. Wang, Y. Zhou, C. Hu, Phase stability, electronic structure and mechanical properties of ternary-layered carbide Nb4AlC3: An ab initio study, Acta Mater. 56 (2008) 1511–1518.

M.F. Cover, O. Warschkow, M.M.M. Bilek, D.R. McKenzie, A comprehensive survey of M2AX phase elastic properties, J. Phys. Condens. Matter. 21 (2009) 305403.

S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London, Edinburgh, Dublin Philos. Mag. J. Sci. 45 (1954) 823–843. https://doi.org/10.1080/14786440808520496.

I.N. Frantsevich, Elastic constants and elastic moduli of metals and insulators, Ref. B. (1982).

Z. Sun, D. Music, R. Ahuja, J.M. Schneider, Theoretical investigation of the bonding and elastic properties of nanolayered ternary nitrides, Phys. Rev. B. 71 (2005) 193402.

I.R. Shein, A.L. Ivanovskii, Elastic properties of superconducting MAX phases from first‐principles calculations, Phys. Status Solidi. 248 (2011) 228–232.




DOI: https://doi.org/10.31349/RevMexFis.67.500

Refbacks

  • There are currently no refbacks.


REVISTA MEXICANA DE FÍSICA, year 67, issue 3, May-June 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946, https://rmf.smf.mx/ojs/rmf, e-mail: rmf@ciencias.unam.mx. Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, May 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License