A study on microstructure and magnetic properties of nanostructured CoxNi1-xMn0.5Fe1.5O4(x=0,0.25,0.5,0.75,1) spinel ferrites

A. Hussain, S. Akbar Tahir, N. Ahmad, M. Hashim, A. Bashir Ziya, S. Noreen


A low-temperature synthesis of novel nanostructured CoxNi1-xMn0.5Fe1.5O4(x=0,0.25,0.5,0.75,1) ferrites was carried out by sol-gel auto-combustion technique. The obtained nanostructured ferrites were investigated by employing the techniques of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and vibrating sample magnetometry (VSM). The XRD diffractograms of the prepared ferrites revealed the formation of a spinel phase with face centered cubic (fcc) structure belonging to Fd- m space group.  The average lattice parameter ‘a’ of ferrites exhibited a rise versus a rise in Co2+ concentration in accordance with the Vegard’s law. The SEM investigation of NiMn0.5Fe1.5O4 powder revealed an existence of octahedral-shaped morphology of ferrite grains. The TEM investigation of NiMn0.5Fe1.5O4 powder showed nanostructures of ferrite particles with sizes consistent with the crystallite sizes as estimated by Debye-Scherer’s formula. An EDX spectrum of NiMn0.5Fe1.5O4 powder confirmed its elemental composition. The M-H hysteresis loops recorded by VSM at room temperature revealed a dependence of coercivity (Hc), maximum magnetization (Mmax) and retentivity (Mr) on Co2+concentration. Due to the shape dependence of M-H loops on Co2+ concentration in compounds enabled their candidature for applications in memory devices and magnetic sensors.


sol-gel technique; spinel structure; X-ray diffraction; scanning electron microscopy; coercivity; remanence

Full Text:



J.-L. Ortiz-Quiñonez, U. Pal, M. S. Villanueva, Structural, Magnetic, and Catalytic Evaluation of Spinel Co, Ni, and Co–Ni Ferrite Nanoparticles Fabricated by Low-Temperature Solution Combustion Process. ACS Omega 3, 14986-15001 (2018); published online Epub2018/11/30 (10.1021/acsomega.8b02229).

C. Dong, G. Wang, D. Guo, C. Jiang, D. Xue, Growth, structure, morphology, and magnetic properties of Ni ferrite films. Nanoscale Research Letters 8, 196 (2013); published online Epub2013/04/27 (10.1186/1556-276X-8-196).

D. S. Mathew, R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chemical Engineering Journal 129, 51-65 (2007); published online Epub2007/05/01/ (https://doi.org/10.1016/j.cej.2006.11.001).

V. Mameli, M. S. Angotzi, C. Cara, C. Cannas, Liquid Phase Synthesis of Nanostructured Spinel Ferrites—A Review. Journal of Nanoscience and Nanotechnology 19, 4857-4887 (2019); published online Epub// (10.1166/jnn.2019.16808).

R. Srivastava, B. Yadav, Ferrite Materials: Introduction, Synthesis Techniques, and Applications as Sensors. International Journal of Green Nanotechnology 4, (2012); published online Epub06/15 (10.1080/19430892.2012.676918).

V. R. Bhagwat, A. V. Humbe, S. D. More, K. M. Jadhav, Sol-gel auto combustion synthesis and characterizations of cobalt ferrite nanoparticles: Different fuels approach. Materials Science and Engineering: B 248, 114388 (2019); published online Epub2019/09/01/ (https://doi.org/10.1016/j.mseb.2019.114388).

S. E. Shirsath, S. S. Jadhav, M. L. Mane, S. Li, in Handbook of Sol-Gel Science and Technology, L. Klein, M. Aparicio, A. Jitianu, Eds. (Springer International Publishing, Cham, 2017), pp. 1-41.

I. T K, P. Lakshmi, Magnetic Nanoparticles – A Review. Int. J. Pharm. Sci. Nanotechnol 3, (2009); published online Epub11/30

P. Kumar, P. Mishra, S. Sahu, Synthesis of Ni-Zn Ferrites Using Low Temperature Sol-Gel Process. (2011); published online Epub08/01

I. Starko, T. Tatarchuk, M. Bououdina, La-doped Ni 0.5 Co 0.5 Fe 2 O 4 nanoparticles: effect of cobalt precursors on structure and morphology. Molecular Crystals and Liquid Crystals 674, 110-119 (2018); published online Epub10/13 (10.1080/15421406.2019.1578517)


N. G. Deshpande, C. H. Ahn, D. S. Kim, S. H. Jung, Y. B. Kim, H. K. Cho, Bifunctional reusable Co0.5Ni0.5Fe2O4 nanoparticle-grafted carbon nanotubes for aqueous dye removal from contaminated water. Catalysis Science & Technology, (2020)10.1039/D0CY01057J).

D. M. Coutinho, V. M. S. Verenkar, Preparation, spectroscopic and thermal analysis of hexa-hydrazine nickel cobalt ferrous succinate precursor and study of solid-state properties of its nanosized thermal product, Ni0.5Co0.5Fe2O4. Journal of Thermal Analysis and Calorimetry 128, 807-817 (2017); published online Epub2017/05/01 (10.1007/s10973-016-6011-8).

A. V. Humbe, J. S. Kounsalye, S. B. Somvanshi, A. Kumar, K. M. Jadhav, Cation distribution, magnetic and hyperfine interaction studies of Ni–Zn spinel ferrites: role of Jahn Teller ion (Cu2+) substitution. Materials Advances 1, 880-890 (2020)10.1039/D0MA00251H).

W. Agami, M. Ashmawy, Structural, physical, and magnetic properties of nanocrystalline manganese-substituted lithium ferrite synthesized by sol–gel autocombustion technique. Applied Physics A 126, (2020); published online Epub06/26 (10.1007/s00339-020-03737-6).

K. Vijaya Babu, G. Satyanarayana, B. Sailaja, G. V. Santosh Kumar, K. Jalaiah, M. Ravi, Structural and magnetic properties of Ni0.8M0.2Fe2O4 (M = Cu, Co) nano-crystalline ferrites. Results in Physics 9, 55-62 (2018); published online Epub2018/06/01/ (https://doi.org/10.1016/j.rinp.2018.01.048).

R. Muchakayala, D. P. Shibeshi, Effect of zinc substitution on the structural, electrical and magnetic properties of nano-structured Ni0.5Co0.5Fe2O4 ⁠ ferrites. Physica B Condensed Matter 534, (2018); published online Epub01/11 (10.1016/j.physb.2018.01.022).

M. K. Kokare, N. A. Jadhav, Y. Kumar, K. M. Jadhav, S. M. Rathod, Effect of Nd3+ doping on structural and magnetic properties of Ni0.5Co0.5Fe2O4 nanocrystalline ferrites synthesized by sol-gel auto combustion method. Journal of Alloys and Compounds 748, 1053-1061 (2018); published online Epub2018/06/05/ (https://doi.org/10.1016/j.jallcom.2018.03.168).

W. Liu, G. Tan, G. Dong, H. Ren, A. Xia, Influence of multi-ion co-doping and NiFe2O4 layer on the properties of BiFeO3/NiFe2O4 composite films by sol–gel. Materials Letters 142, 27-29 (2015); published online Epub2015/03/01/ (https://doi.org/10.1016/j.matlet.2014.11.141).

H. Saqib, S. Rahman, R. Susilo, B. Chen, N. Dai, Structural, vibrational, electrical, and magnetic properties of mixed spinel ferrites Mg1-xZnxFe2O4 nanoparticles prepared by co-precipitation. AIP Advances 9, 055306 (2019); published online Epub2019/05/01 (10.1063/1.5093221).

H. Shokrollahi, L. Avazpour, Influence of intrinsic parameters on the particle size of magnetic spinel nanoparticles synthesized by wet chemical methods. Particuology 26, 32-39 (2016); published online Epub2016/06/01/ (https://doi.org/10.1016/j.partic.2015.10.004).

P. Thakur, A. Thakur, M. Singh, Effect of particle size on the properties of Mn–Zn–In ferrites. 77, 25701-25705 (2008); published online Epub01/01

G. Padmapriya, A. Manikandan, V. Krishnasamy, S. K. Jaganathan, S. A. Antony, Spinel NixZn1−xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: Synthesis, characterization and photocatalytic degradation of methylene blue dye. Journal of Molecular Structure 1119, 39-47 (2016); published online Epub2016/09/05/ (https://doi.org/10.1016/j.molstruc.2016.04.049).

L. Zheng, K. Fang, M. Zhang, Z. Nan, L. Zhao, D. Zhou, M. Zhu, W. Li, Tuning of spinel magnesium ferrite nanoparticles with enhanced magnetic properties. RSC Advances 8, 39177-39181 (2018)10.1039/C8RA07487A).

N. Deraz, A. Alarifi, Synthesis and Physicochemical Properties of Nanomagnetic Zinc Ferrite System. International Journal of Electrochemical Science 7, (2012); published online Epub05/01

W. Wang, Z. Ding, X. Zhao, S. Wu, F. Li, M. Yue, J. P. Liu, Microstructure and magnetic properties of MFe2O4 (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method. Journal of Applied Physics 117, 17A328 (2015); published online Epub2015/05/07 (10.1063/1.4917463).

Z. Xu, J. Fan, T. Liu, Y. Han, H. Zhang, Calcination induced phase transformation in MnZn ferrite powders. Journal of Alloys and Compounds 814, 152307 (2020); published online Epub2020/01/25/ (https://doi.org/10.1016/j.jallcom.2019.152307).

Z. Xu, J. Fan, Y. Han, T. Liu, H. Zhang, K. Song, C. Zhang, Preparation and characterization of Mn–Zn ferrites via nano-in-situ composite method. Solid State Sciences 98, 106006 (2019); published online Epub2019/12/01/ (https://doi.org/10.1016/j.solidstatesciences.2019.106006).

T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, M. Pacia, Structural, Optical, and Magnetic Properties of Zn-Doped CoFe(2)O(4) Nanoparticles. Nanoscale research letters 12, 141-141 (2017)10.1186/s11671-017-1899-x).

M. Lakshmi, K. Vijaya Kumar, K. Thyagarajan, An investigation of structural and magnetic properties of Cr–Zn ferrite nanoparticles prepared by a sol–gel process. Journal of Nanostructure in Chemistry 5, 365-373 (2015); published online Epub2015/12/01 (10.1007/s40097-015-0168-8).

L. T. Lu, N. T. Dung, L. D. Tung, C. T. Thanh, O. K. Quy, N. V. Chuc, S. Maenosono, N. T. K. Thanh, Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale 7, 19596-19610 (2015)10.1039/C5NR04266F).

T. Petrova, N. Velinov, D. Filkova, I. Ivanova, I. Ivanov, I. Yordanova, S. Todorova, V. Idakiev, N. Petrov, I. Mitov, Synthesis and characterization of supported spinel ferrite catalysts. Journal of Chemical Technology and Metallurgy 53, 1186-1194 (2018); published online Epub01/01

S. Modak, M. Ammar, F. Mazaleyrat, S. Das, P. K. Chakrabarti, XRD, HRTEM and magnetic properties of mixed spinel nanocrystalline Ni–Zn–Cu-ferrite. Journal of Alloys and Compounds 473, 15-19 (2009); published online Epub2009/04/03/ (https://doi.org/10.1016/j.jallcom.2008.06.020).

D. R. Kumar, S. I. Ahmad, C. A. Lincoln, D. Ravinder, Structural, optical, room-temperature and low-temperature magnetic properties of Mg–Zn nanoferrite ceramics. Journal of Asian Ceramic Societies 7, 53-68 (2019); published online Epub2019/01/02 (10.1080/21870764.2018.1563036).

R. S. Pandav, R. P. Patil, S. S. Chavan, I. S. Mulla, P. P. Hankare, Magneto-structural studies of sol–gel synthesized nanocrystalline manganese substituted nickel ferrites. Journal of Magnetism and Magnetic Materials 417, 407-412 (2016); published online Epub2016/11/01/ (https://doi.org/10.1016/j.jmmm.2016.04.090).

M. A. Rafiq, A. Javed, M. N. Rasul, M. A. Khan, A. Hussain, Understanding the structural, electronic, magnetic and optical properties of spinel MFe2O4 (M = Mn, Co, Ni) ferrites. Ceramics International 46, 4976-4983 (2020); published online Epub2020/03/01/ (https://doi.org/10.1016/j.ceramint.2019.10.237).

A. Hussain, T. Abbas, S. Niazi, Preparation of Ni1−xMnxFe2O4 ferrites by sol–gel method and study of their cation distribution. Ceramics International 39, 1221–1225 (2013); published online Epub03/01 (10.1016/j.ceramint.2012.07.049).

L. C. Xue, L. L. Lang, J. Xu, Z. Z. Li, W. H. Qi, G. D. Tang, L. Q. Wu, Magnetic moment directions and distributions of cations in Cr (Co) substituted spinel ferrites Ni0.7Fe2.3O4. AIP Advances 5, 097167 (2015); published online Epub2015/09/01 (10.1063/1.4931919).

F. Gomes da Silva, J. Depeyrot, A. Campos, R. Aquino, D. Fiorani, D. Peddis, Structural and Magnetic Properties of Spinel Ferrite Nanoparticles. Journal of Nanoscience and Nanotechnology 19, 1-15 (2019); published online Epub08/01 (10.1166/jnn.2019.16877).

N. N. Mojumder, C. Augustine, D. E. Nikonov, K. Roy, Effect of quantum confinement on spin transport and magnetization dynamics in dual barrier spin transfer torque magnetic tunnel junctions. Journal of Applied Physics 108, 104306 (2010); published online Epub2010/11/15 (10.1063/1.3503882).

U. Salazar-Kuri, J. O. Estevez, N. R. Silva-González, U. Pal, M. E. Mendoza, Structure and magnetic properties of the Co1-xNixFe2O4-BaTiO3 core-shell nanoparticles. Journal of Magnetism and Magnetic Materials 442, 247-254 (2017); published online Epub2017/11/15/ (https://doi.org/10.1016/j.jmmm.2017.06.126).

H. Y. He, Structural and Magnetic Property of Co1-xNixFe2O4 Nanoparticles Synthesized by Hydrothermal Method. International Journal of Applied Ceramic Technology 11, (2014); published online Epub07/01 (10.1111/ijac.12071).

DOI: https://doi.org/10.31349/RevMexFis.67.527


  • There are currently no refbacks.

REVISTA MEXICANA DE FÍSICA, year 67, issue 3, May-June 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946, https://rmf.smf.mx/ojs/rmf, e-mail: rmf@ciencias.unam.mx. Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, May 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License