Modeling the electronic structure and stability of three aluminum nitride phases

J. Ruiz-González, G. H. Cocoletzi, L. Morales de la Garza

Abstract


Phase transitions in aluminum nitride (AlN) were investigated by first principles total energy calculations. Three AlN crystal structures were considered: rock salt (NaCl), zinc blende and wurtzite. The cohesion energy was calculated within both GGA and LDA formalisms. According to the cohesion energy results, the ground state corresponds to the hexagonal wurtzite phase, in agreement with experimental evidence. However, the zinc blende and NaCl phases may be formed as metastable structures. To determine the energy gap the modified Becke-Johnson pseudopotential was applied, with results showing good agreement with the experimental data. The ground state structure exhibits direct electronic transitions. However, the zinc blende and NaCl phases show indirect band gap. Provided that external pressures may induce transitions from wurtzite to zinc blende or rock salt, these transitions were also investigated. Estimation of the pressure at the phase transition indicates that small pressures are needed to achieve such transitions.

Keywords


Aluminum Nitride, DFT, Electronic Structure

Full Text:

PDF

References


Feneberg, M.; Leute, R. A. R.; Neuschl, B.; Thonke, K.; Bickermann, M. (2010). Phys. Rev. B. 82 (7): 075208.

G. A. Jeffrey, G. S. Parry, Crystal Structure of Aluminum, J. Chem. Phys., 23, 406 (1955).

E. Ruiz, S. Alvarez, P. Alemany, Electronic structure and properties of AIN, Phys. Rev. B., 49, 7115 (1994).

S. Wang, Y. An, C. Xie, H. Zhang, Q. Zeng, First-principles prediction of ferromagnetism in transition-metal doped monolayer AlN, Superlattice Microstruct., 122, 171 (2018).

D. Vogel, Peter Krüger, J. Pollmann, Structural and electronic properties of group-III nitrides, Phys. Rev. B, 55, 12836 (1997).

J. H. Edgar, Properties of Group III Nitrides, EMIS Datareviews Series, London, 1994.

I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys, J. Appl. Phys., 89, 5815 (2001).

D. Kumar, J. Antifakos, M.G. Blamire, Z.H. Barber, High Curie temperatures in ferromagnetic Cr-doped AlN thin films, Appl. Phys. Lett., 84, 5004 (2004).

F.Y. Ran, M. Subramanian, M. Tanemura, Y. Hayashi, T. Hihara, Ferromagnetism in Cu-doped AlN films, Appl. Phys. Lett., 95, 112111 (2009).

Y. Wang, N. Song, X. Song, T. Zhang, D. Yang, M. Li, A first-principles study of gas adsorption on monolayer AlN sheet, Vacuum, 147, 18 (2018).

H. Hu, Z. Wu, W. Zhang, H. Li , R. Zhuo, D. Yan, J. Wang, P. Yan, Temperaturedependent growth, photoluminescence and ferromagnetic properties of Co-doped AlN hexagonal nanostructures, Mater Lett., 142, 106 (2015).

C.-M. Lin, W.-C. Lien, V. V. Felmetsger, M. A. Hopcroft, D. G. Senesky, and A. P. Pisano, Applied Physics Letters 97, 141907 (2010).

A. Ababneh, M. Alsumady, H. Seidel, T. Manzaneque, J. Hernando-Garcia, J. L. Sanchez-Rojas, A. Bittner, and U. Schmid, Appl Surf Sci 259, 59 (2012).

N. E. Christensen and I. Gorczyca, Phys Rev B 47, 4307 (1993).

N. E. Christensen and I. Gorczyca, Phys Rev B 50, 4397 (1994). 19

A. Siegel, K. Parlinski, and U. D. Wdowik, Phys Rev B 74, 104116 (2006).

http://www.wien2k.at

J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters 77 (18) (1996) 3865.

A. D. Becke, E. R. Johnson, A simple e_ective potential for exchange, The Journal of Chemical Physics 124 (22) 221101.

F. Tran, P. Blaha, K. Schwarz, Band gap calculations with Becke-Johnson exchange potential, Journal of Physics: Condensed Matter 19 (19) (2007) 196208.

F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Phys. Rev. Lett. 102 (22) (2009) 226401.

C. Kittle, Introduction to Solid State Physics (Wiley, New York, 1986).

H. Schulz and K. H. Thiemann, Solid State Commun. 23, 815 (1977).

S. K. Yadav, J. Wang, and X. Y. Liu, Journal of Applied Physics 119, 224304 (2016). DOI: 10.1063/1.4953593.




DOI: https://doi.org/10.31349/RevMexFis.67.343

Refbacks

  • There are currently no refbacks.


REVISTA MEXICANA DE FÍSICA, year 67, issue 3, May-June 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946, https://rmf.smf.mx/ojs/rmf, e-mail: rmf@ciencias.unam.mx. Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, May 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License