Prediction of rms charge radius of proton using proton-proton elastic scattering data at TeV

S. Zahra, B. Shafaq


Using  proton–proton elastic scattering data  at  TeV and squared four-momentum transfer 0.36 < -t <  0.76 (GeV/c)2 for 13 σBeam distance  and  0.07 < -t <  0.46 (GeV/c)2 for 4.3 σBeam distance, form factor of proton is predicted. Simplest version of Chou–Yang model is employed to extract the form factor by fitting experimental data of differential cross section from TOTEM experiment (for 13σBeamand 4.3 σBeam distance) to a single Gaussian. Root mean square (rms) charge radius of proton is calculated using this form factor.  It is found to be equal to 0.91 fm and 0.90 fm respectively. Which is in good agreement with experimental data and theoretically predicted values.


Chou–Yang model, p-p scattering, form factor of proton

Full Text:



G. Antchev et al., Proton-proton elastic scattering at the LHC energy of √s = 7 TeV, EPL. 95 (2011) 41001. 10.1209/0295-5075/95/41001.

G. Antchev et al., First measurement of the total protonproton cross-section at the LHC energy of √s = 7 TeV,EPL. 96 (2011) 21002.

G. Antchev et al., Luminosity-Independent Measurement of the Proton-Proton Total Cross Section at √s = 8 TeV, Phys. Rev. Letts. 111 (2013) 012001.

TOTEM Collaboration, Evidence for non-exponential elastic proton-proton differential cross-section at low |t| and √s = 8TeV by TOTEM, Nucl. Phys. B. 899 (2015) 527.

G. Antchev, et al., Measurement of elastic pp scattering at √s = 8 TeV in the Coulomb-nuclear interference region: determination of the ρ-parameter and the total crosssection, EPJC. 76 (2016) 661.

G. Antchev, et al., First determination of the ρ-parameter at √s = 13 TeV: probing the existence of a colourless C-odd three-gluon compound state, EPJC. 79 (2019) 785.

G. Antchev et al., Elastic differential cross-section measurement at root s = 13 TeV by TOTEM, EPJC. 79 (2019) 861.

G. Antchev, et al., First measurement of elastic, inelastic and total cross-section at √s = 13 TeV by TOTEM and overview of cross-section data at LHC energies, EPJC. 79 (2019) 103.

G. Antchev et al., Elastic differential cross-section d sigma/dt at root s = 2.76 TeV and implications on the existence of a colourless C-odd three-gluon compound state, EPJC. 80 (2020) 91.

J. C. Bernauer, et al., Electric and magnetic form factors of the proton, Phys. Rev. C, 90 (2014) 015206.

P. J. Mohr, B. N. Taylor, and D. B. Newell, CODATA recommended values of the fundamental physical constants: 2006, J Phys Chem Ref Data. 37 (2008) 1187.

A. Antognini, et al., Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen. Science 339 (2013) 417. 10.1126/science.1230016.

P. K. Chatley, C. P. Singh, and M. P. Khanna, Charge radii of proton and M 1 radiative transitions of hadrons in a bag model with variable bag pressure. Phys. Rev. D. 29 (1984) 96.

S.G. Fedosin, The radius of the proton in the self-consistent model. Had. Jour. 35 (2012) 349.

N. Hasan et al., Computing the nucleon charge and axial radii directly at Q2 = 0 in lattice QCD, Phys. Rev. D. 97 (2018) 034504. 10.1103/PhysRevD.97.034504

F. M. Stokes, W. Kamleh, and D. B. Leinweber, Elastic form factors of nucleon excitations in lattice QCD, Phys. Rev. D. 102 (2020) 014507.

Y. C. Jang, R. Gupta, H. W. Lin, B. Yoon, T. Bhattacharya, and PNDME Collaboration, Nucleon electromagnetic form factors in the continuum limit from (2 + 1 + 1)-flavor lattice QCD, Phys. Rev. D. 101 (2020) 014507.

S. Zahra, and H. Rashid, Predictions of the Chou-Yang Model for pp Scattering at √s = 8 TeV, Chin. Phys. Letts. 36 (2019) 061201. 10.1088/0256-307X/36/6/061201

C. A. Dominguez, Electromagnetic form factors of hadrons in quantum field theories, AIP Conference Proceedings (Vol. 1056, No. 1, 23-30), (2008) American Institute of Physics.

O. D. Dalkarov, P. A. Khakhulin, and A. Y. Voronin, On the electromagnetic form factors of hadrons in the time-like región near threshold, Nucl. Phys. A. 833 (2010) 104 10.1016/j.nuclphysa.2009.11.015

D. B. Leinweber, et al., Strange electric form factor of the proton, Phys. Rev. Letts. 97 (2006) 022001,

J. J. Murphy, I. I., Shin, Y. M. and D. M. Skopik, Proton form factor from 0.15 to 0.79 fm2, Phys. Rev. C. 9 (1974) 2125.

T. T. Chou, and C. N. Yang, Model of elastic high-energy scattering, Phys. Rev. 170 (1968) 1591.

A. W. Chao, and C. N. Yang, Opaqueness of pp collisions from 30 to 1500 GeV/c, Phys. Rev. D. 8 (1973) 2063.

S.-Y. Lo., Geometrical Pictures in Hadronic Collisions: A Reprint Volume, (World Scientific, 1987). Chap. 4, p. 37

L. Durand III, and R. Lipes, Diffraction Model for High-Energy pp Scattering, Phys. Rev. Letts. 20 (1968) 637.

J. G. Rutherglen, in Proceedings of the 4th International Symposium on Electron and Photon Interactions at High Energies, Liverpool, (1969) Sept. 14-20, Ed. by D. W. Braben (Liverpool Daresbury, Univ. of Glasgow), p. 163.

M. Saleem, and I. A. Azhar, Generalized Chou-Yang Model for p(¯p)p and Λ(Λ) ¯ p Elastic Scattering at High Energies, EPL. 6 (1988) 201. 10.1209/0295-5075/6/3/003

P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020 (2020) 083C01,

H. Fleurbaey, New measurement of the 1 S- 3 S transition frequency of hydrogen: contribution to the proton charge radius puzzle, Phys. Rev. Letts. 120 (2018) 183001. 10.1103/PhysRevLett.120.183001

G. Lee, J.R. Arrington, and R.J. Hill, Extraction of the proton radius from electron-proton scattering data, Phys. Rev. D. 92 (2015) 013013.

Sick, Ingo. Proton charge radius from electron scattering, Atoms 6 (2018) 2.

D. Borisyuk, Proton charge and magnetic rms radii from the elastic ep scattering data, Nucl. Phys. A. 843 (2010) 59.

P.G. Blunden, and I. Sick, Proton radii and two-photon exchange, Phys. Rev. C. 72 (2005) 057601.

I. Sick, On the rms-radius of the proton, Phys. Letts. B. 576 (2003) 62,



  • There are currently no refbacks.

REVISTA MEXICANA DE FÍSICA, year 67, issue 3, May-June 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946,, e-mail: Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, May 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License