New magnetic flux flows with Heisenberg ferromagnetic spin of optical quasi velocity magnetic flows with flux density

T. Körpınar, R. Cem Demirkol, Z. Körpınar, V. Asil

Abstract


In this article, we first offer the approach of quasi magnetic Lorentz flux of quasi velocity magnetic flows of particles by the quasi frame in 3D space. Eventually, we obtain new optical conditions of quasi magnetic Lorentz flux by using directional quasi fields. Moreover, we determine quasi magnetic Lorentz flux for quasi vector fields. Also, we give new constructions for quasi curvatures of quasi velocity magnetic flows by considering Heisenberg ferromagnetic spin. Finally, magnetic flux surface is demonstrated in a static and uniform magnetic surface by using the analytical and numerical results.

Keywords


Quasi directional frame, flows, Heisenberg ferromagnetic spin, geometric magnetic flux density

Full Text:

PDF

References


A.M Smith, Polarization and magnetooptic properties of singlemode optical fiber, Appl. Opt. 17 (1978) 52. https://doi.org/10.1364/AO.17.000052

J.N. Ross, The rotation of the polarization in low birefringence monomode optical fibres due to geometric effects, Opt. Quantum Electron. 16 (1984) 455. https://doi.org/10.1007/BF00619638

A. Tomita and Y. Chiao, Observation of Berry’s topological phase by use of an optical fiber, Phys. Rev. Lett. 57 (1986) 937. https://doi.org/10.1103/PhysRevLett.57.937

R.Y. Chiao and Y.S. Wu, Manifestations of Berry’s topological phase for the photon, Phys. Rev. Lett. 57 (1986) 933. https://doi.org/10.1103/PhysRevLett.57.933

F.D.M Haldane, Path dependence of the geometric rotation of polarization in optical fibers, Opt. Lett., 11 (1986) 730. https://doi.org/10.1364/OL.11.000730

T. Korpınar and R.C. Demirkol, Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D semiRiemannian manifold, J. Mod. Opt., 66 (2019) 857. https://doi.org/10.1080/09500340.2019.1579930

T Korpınar, R.C. Demirkol and Z. K ¨ orpınar, Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in Minkowski space with Bishop equations, Eur. Phys. J. D 73 (2019) 203. https://doi.org/10.1140/epjd/e2019-100250-7

T. Korpınar, R.C. Demirkol and Z. Korpınar, Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in the ordinary space, Int. J. Geom. Methods Mod. Phys. 16 (2019) 1950117. https://doi.org/10.1142/S0219887819501172

T. Korpınar, R.C. Demirkol and Z. Korpınar, Soliton propagation of electromagnetic field vectors of polarized light ray traveling along with coiled optical fiber on the unit 2-sphere S2, Rev. Mex. Fıs. 65 (2019) 626-633. https://doi.org/10.31349/revmexfis.65.626

T. Korpınar and R.C. Demirkol, Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D Riemannian manifold with Bishop equations, Optik, 200 (2020) 163334. https://doi.org/10.1016/j.ijleo.2019.163334

G.L. Lamb, Solitons on moving space curves, J. Math.Phys., 18 (1977) 1654. https://doi.org/10.1063/1.523453

S. Murugesh and R. Balakrishnan, New connections between moving curves and soliton equations, Phys. Lett. A, 290 (2001) 81. https://doi.org/10.1016/S0375-9601(01)00632-6 13. M.V. Berrry, Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. A. Proc. R. Soc. Lond. A, 392 (1984) 45. https://doi.org/10.1098/rspa.1984.0023

X.S. Fang and Z.Q. Lin, Field in single-mode helicallywound optical fibers, IEEE Trans. Microw. Theory Techn. 33 (1985) 1150. https://doi.org/10.1109/TMTT.1985.1133187.

J.N. Ross, The rotation of the polarization in low birefringence monomode optical fibres due to geometric effects, Opt. Quantum Electron. 16 (1984) 455. https://doi.org/10.1007/BF00619638

L. Lu, J. D. Joannopoulos, and M. Soljaciˇ c, Topological photonics, Nat. Photonics 8 (2014) 821, https://doi.org/10.1038/nphoton.2014.248.

F. Wassmann and A. Ankiewicz, Berry’s phase analysis of polarization rotation in helicoidal fibers, Appl. Opt. 37 (1998) 3902. https://doi.org/10.1364/AO.37.003902

R. Balakrishnan, R. Bishop and R. Dandoloff, Geometric pase in the classical continuous antiferromagnetic Heisenberg spin chain, Phys. Rev. Lett. 64 (1990) 2107. https://doi.org/10.1103/PhysRevLett.64.2107 19. R. Balakrishnan, R. Bishop and R. Dandoloff, Anholonomy of a moving space curve and applications to classical magnetic chains, Phys. Rev. B, 47 (1993) 3108. https://doi.org/10.1103/PhysRevB.47.3108

R Balakrishnan and R Dandoloff, The Schrodinger equation as a moving curve, Phys. Lett. A, 260 (1999) 62-67. https://doi.org/10.1016/S0375-9601(99)00492-2

J. Anandan, The geometric phase, Nature. 360 (1992) 307.https://doi.org/10.1038/360307a0

T.Korpinar and R.C. Demirkol, Gravitational magnetic curves on 3D Riemannian manifolds, Int. J. Geom. Methods Mod. Phys. 15 (2018) 1850184. https://doi.org/10.1142/S0219887818501840

T. Korpinar and R.C. Demirkol, Frictional magnetic curves in 3D Riemannian manifolds, Int. J. Geom. Methods Mod. Phys. 15 (2018) 1850020. https://doi.org/10.1142/S0219887818500202

M.P. Carmo, Differential Geometry of Curves and Surfaces, (Prentice-Hall, New Jersey, 1976).

M. Dede, C. Ekici and H. Tozak, Directional tubular surfaces, Int. J. Algebra, 9 (2015) 527. http://dx.doi.org/10.12988/ija.2015.51274




DOI: https://doi.org/10.31349/RevMexFis.67.378

Refbacks

  • There are currently no refbacks.


REVISTA MEXICANA DE FÍSICA, year 67, issue 3, May-June 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946, https://rmf.smf.mx/ojs/rmf, e-mail: rmf@ciencias.unam.mx. Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, May 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License