Compressive behavior of a Zn22wtAl2Cu cellular alloy with different densities, microstructures and cell shapes

J. A. Aragón-Lezama, A. Garcia-Borquez, G. Torres-Villaseñor


Zn22Al2Cu cellular alloy was prepared with six different densities, two microstructures and two cell shapes to determine the effect of these factors on its compressive behavior. NaCl granules with sharp edges, as purchased and with smooth edges obtained by roughly polishing the purchased granules were used as spacers. The elaboration process of the alloy foam consisted of melting the alloy, immersing the granules in the liquid alloy, air-cooling and then dissolving the salt in boiling water. The matrix obtained with the materials had an as-cast microstructure, and a fine microstructure, which was achieved with a heat treatment applied prior to dissolving the NaCl granules. Samples were tested in compression at a 10-3 s-1 strain rate. The smooth shape of the cells caused that the as-cast microstructure in the matrix produces an elastic behavior, which is described by the equation derived by Ashby for the relative elastic modulus and the relative density of sponges. The same type of cell shape embedded in the fine microstructure produces an elastic behavior in compression that depends on the density, which is typical of very low-density foams, although much lower than those achieved in this study. Compressive behavior is chaotic when cells have sharp shape, regardless microstructure type. The alloy studied with 4 mm mean size cells has a compression behavior like a sponge or low-density foam, when its cell walls have smooth contours, and as-cast or fine microstructure, respectively.


Zn22Al2Cu cellular alloy; Semi-solid processing; Microstructural characterization; Scanning electron microscopy; Compression.

Full Text:



M. F. Ashby and R. F. Medalist, The mechanical properties of cellular solids, Metall. Mater. Trans. A 14 (1983) 1755,

H. P. Degischer and B. Kriszt, Handbook of Cellular Metals: Production, Processing, Applications (Wiley-VCH, New Jersey, 2002), pp. 181-182,

J. Liu et al., The compressive properties of closed-cell Zn-22Al foams, Mater. Lett. 62 (2008) 683,

J. Liu et al., Dynamic compressive strength of Zn-22Al foams, J. Alloys Compd. 476 (2009) 466,

K. Sekido and K. Kitazono, Effect of Porosity on Tensile and Compressive Deformations of Superplastic Zn-22Al Alloy Foam, Mater. Sci. Forum 735 (2012) 73,

J. Liu et al., Effect of Al2O3 short fiber on the compressive properties of Zn- 22Al foams, Mater. Lett. 62 (2008) 3636,

S. Yu, J. Liu, Y. Luo, and Y. Liu, Compressive behavior and damping property of ZA22/SiCp composite foams, Mater. Sci Eng. A 457 (2007) 325,

: J. Liu et al., Correlation between ceramics additions and compressive properties of Zn-22Al matrix composite foams, J. Alloys Compd. 476 (2009) 220,

S. Yu et al., Compressive property and energy absorption characteristic of open-cell ZA22 foams, Mater. Des. 30 (2009) 87,

S. R. Casolco, G. Dominguez, D. Sandoval, and J. E. Garay, Processing and mechanical behavior of Zn-Al-Cu porous alloys, Mater. Sci. Eng. A 471 (2007) 28,

K. Kitazono and Y. Takiguchi, Strain rate sensitivity and energy absorption of Zn-22Al foams, Scr. Mater. 55 (2006) 501,

A. Daoud, Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting, Mater. Sci. Eng. A 488 (2008) 281,

J. A. Aragon-Lezama, A. Garcia-Borquez, and G. TorresVillasenor, Foam behavior of solid glass spheres-Zn22Al2Cu ˜composites under compression stresses, Mater. Sci. Eng. A 638 (2015) 165,

J. Banhart and J. Baumeister, Deformation characteristics of metal foams, J. Mater. Sci. 33 (1998) 1431,

H. Nakajima, Fabrication, properties and application of porous metals with directional pores, Prog. Mater. Sci. 52 (2007) 1091,

J. Banhart, Manufacturing routes for metallic foams, Solidif. Sci. JOM 52 (2000) 22,

S. R. Casolco, A. Zanatta, A. Chavelas, and S. Valdez, Evolution of Zn+NaCl foams, characterization and interconnection in closed cell, Supp. Proc. TMS 3 (2009) 551.

Ch. He-fa, H. Xiao-mei, W. Jian-ning, and H. Fu-sheng, Damping capacity and compressive characterization in some aluminum foams, Trans. Nonferrous Met. Soc. China 13 (2003) 1046.

W. Jian-Ning, Ch. Zhang-Yong, and L. Gen-Mei, Study on preparation of foamed Zn-Al eutectoid alloy by air pressure infiltration process, Asia-Pacific Eng. Technol. Conf. 2017 (2017) 989,

L. J. Gibson and M. F. Ashby, Cellular Solids, Ch. 5 (Pergamon Press, Oxford, 1988), pp. 196,

A. A. Presnyakov, Y. A. Gotban, and V. V. Cherpyakova, Aluminum-Zinc Phase diagram, Phys. Chem. 55 (1961) 623.

A. Sandoval-Jimenez, J. Negrete, and G. Torres-Villaseñor, Phase transformations in the Zn-Al eutectoid alloy after quenching from the high temperature triclinic beta phase, Mater. Charact. 61 (2010) 1286,

R. Florek, F. Simanˇck, M. Nosko, and J. Harnˇskova, Compression test evaluation method for aluminium foam parts of different alloys and densities, Powder Metall. Prog. 10 (2010) 207.

M. Em´ılia Rosa, An introduction to solid foams, Philos. Mag. Lett. 88 (2008) 637,

G. Torres-Villasenor. J. Negrete, and L. Valdés, Propiedades y usos del Zinalco, Rev. Mex. Fis. 31 (1984) 489.

F. A. McClintock and A. S. Argon, Mechanical Behavior of Materials (Addison-Wesley, Massachusetts, 1966), pp. 411-4123.

D. K. Felbeck and A. G. Atkins, Strength and fracture of engineering solids, Ch. 14, 2nd ed. (Prentice Hall, New Jersey, 1996), pp. 308-326.

M. Avalle, G. Belingardi, and A. Ibba, Mechanical models of cellular solids: Parameters identification from experimental tests, Int. J. Impact Eng. 34 (2007) 3,

L. J. Gibson, Mechanical Behavior of Metallic Foams, Annu. Rev. Mater. Sci. 30 (2000) 191,



  • There are currently no refbacks.

REVISTA MEXICANA DE FÍSICA, year 67, issue 3, May-June 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946,, e-mail: Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, May 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License