Cu 4O3 thin films deposited by non-reactive rf-magnetron sputtering from a copper oxide target

M. A. Cruz Almazán, E. Vigueras Santiago, R. López, S. Hernández López, V. Hugo Castrejón Sánchez, A. Esparza, C. Encarnación Gómez


Copper oxide thin films deposited by sputtering are frequently formed by using metal copper targets in reactive atmospheres. In this report, paramelaconite (Cu4O3) thin films were deposited by non-reactive rf magnetron sputtering. The target used for sputtering was a copper oxide disk fabricated by oxidation of metal copper at 1000 °C for 24 h in air
atmosphere. X-ray diffraction (XRD) results showed that the copper oxide target was mainly composed of cupric oxide (CuO) and cuprous oxide (Cu2O) crystals. Raman analyses suggested that the surface of the copper oxide disk is composed by a (CuO) layer. XRD measurements performed to the copper oxide thin films deposited by non-reactive rf magnetron sputtering showed that the film is composed of (Cu4O3) crystals. However,
Raman measurements indicated that the Cu4O3 thin films are also composed by amorphous CuO and Cu2O.


paramelaconite; Cu​4​O​3​; non reactive sputtering; thermal oxidation

Full Text:



Dolai, R. Dey, S. Das, S. Hussain, R. Bhar, A.K. Pal, Cupric oxide (CuO) thin films prepared by reactive d.c. magnetron sputtering technique for photovoltaic application,

Journal of Alloys and Compounds,​724​ (2017) 456-464.​1.

A.O Musa, T Akomolafe, M.J Carter, Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties, Solar Energy

Materials and Solar Cells, ​51 ​(1998) 305-316.

Zhelong Jiang, Shiliang Tian, Shuqi Lai, Rebecca D. McAuliffe, Steven P. Rogers, Moonsub Shim, and Daniel P. Shoemaker, Capturing Phase Evolution during Solvothermal

Synthesis of Metastable Cu4O3, Chemistry of Materials ​28​ (2016) 3080-3089.

DOI: 10.1021/acs.chemmater.6b00421

Smith, D. et al., Penn State University, University Park, Pennsylvania, USA., ICDD Grant-in-Aid, (1979).

Kim, H.-S., Kumar, M. D., Park, W.-H., Patel, M., & Kim, J. Cu 4 O 3 -based all metal oxides for transparent photodetectors. Sensors and Actuators A: Physical, ​253 (2017) 35–40.


Martić, N., Reller, C., Macauley, C., Löffler, M., Schmid, B., Reinisch, D., Volkova E., Maltenberger A., Rucki A., Mayrhofer K., Schmid, G.,Paramelaconite-Enriched

Copper-Based Material as an Efficient and Robust Catalyst for Electrochemical Carbon Dioxide Reduction. Advanced Energy Materials, ​9 ​ (2019) 1901228.


Thanuja, J., Udayabhanu, Nagaraju, G., Raja Naika H, Biosynthesis of Cu4O3 nanoparticles using Razma seeds: application to antibacterial and cytotoxicity activities. SN

Appl. Sci. ​1 ​(2019) 1646.

Zhelong Jiang, Shiliang Tian, Shuqi Lai, Rebecca D. McAuliffe, Steven P. Rogers, Moonsub Shim, and Daniel P. Shoemaker, Capturing Phase Evolution during Solvothermal

Synthesis of Metastable Cu4O3, Chemistry of Materials, ​28​ (2016) 3080-3089.

DOI: 10.1021/acs.chemmater.6b00421

Arreguín-Campos, M., Campos-Gonzalez, E., Guillén-Cervantes, A., Santos-Cruz, J., Mayén-Hernández, S. A., Zelaya-Angel, O., Olvera M. de la L., Contreras Puente G, deMoure-Flores, F., Synthesis of paramelaconite nanoparticles by laser ablation. Journal of Laser Applications, ​30​ (2018), 012012.


J.F. Pierson, A. Thobor-Keck, A. Billard, Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering, Applied Surface Science, ​210​ (2003) 359-367.

Murali, D.S., Aryasomayajula, S. Thermal conversion of Cu4O3 into CuO and Cu2O and the electrical properties of magnetron sputtered Cu4O3 thin films. Appl. Phys. A ​124

(2018) 279.

Li, F., Chang, Q., Li, N., Xue, C., Liu, H., Yang, J., Shengliang H., Wang, H., Carbon dots-stabilized Cu4O3 for a multi-responsive nanozyme with exceptionally high activity.

Chemical Engineering Journal, ​394​ (2020) 125045.


Radjehi, L., Aissani, L., Djelloul, A., Lamri, S., Nomenyo, K., Achache, S., Lerondel G, Sanchette, F., Effect of vacuum annealing on the structural and optical properties of

sputtered Cu4O3 thin films, Surface Engineering, ​35 ​ (2020) 1–7.


Yahya Alajlani, Frank Placido, Anders Barlow, Hin On Chu, Shigeng Song, Saeed Ur Rahman, Robert De Bold, Des Gibson, Characterisation of Cu2O, Cu4O3, and CuO mixed phase thin films produced by microwave-activated reactive sputtering, Vacuum, ​144 (2017) 217-228.

Qing Yang, Zhiang Guo, Xiaohong Zhou, Juntao Zou, Shuhua Liang, Ultrathin CuO nanowires grown by thermal oxidation of copper powders in air, Materials Letters, ​153

(2015) 128-131.​.

M.A. Dar, Q. Ahsanulhaq, Y.S. Kim, J.M. Sohn, W.B. Kim, H.S. Shin, Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method;

structural properties and growth mechanism, Applied Surface Science, ​255 (2009) 6279-6284.

Adilov, S.R., Afanaciev, V.P., Kashkul, I.N. et al. Studying the composition and structure of films obtained by thermal oxidation of copper. Glass Phys Chem ​43 ​(2017) 272–275.

Patwary, M. A. M., Ho, C. Y., Saito, K., Guo, Q., Yu, K. M., Walukiewicz, W., Tanaka, T. (2020). Effect of oxygen flow rate on properties of Cu4O3 thin films fabricated by radio frequency magnetron sputtering. Journal of Applied Physics, ​127 (2020) 085302.


Deng, Y., Handoko, A. D., Du, Y., Xi, S., & Yeo, B. S., In Situ Raman Spectroscopy of Copper and Copper Oxide Surfaces during Electrochemical Oxygen Evolution Reaction:

Identification of CuIII Oxides as Catalytically Active Species. ACS Catalysis, ​6 (2016) 2473–2481.


L. Debbichi, M. C. Marco de Lucas, J. F. Pierson, and P. Krüger, Vibrational Properties of CuO and Cu4O3 from First-Principles Calculations, and Raman and Infrared

Spectroscopy, The Journal of Physical Chemistry C ​116 ​(2012)10232-10237.

DOI: 10.1021/jp303096m



  • There are currently no refbacks.

REVISTA MEXICANA DE FÍSICA, year 67, issue 3, May-June 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946,, e-mail: Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, May 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License