Solitary wave solutions in two-Core optical fibers with coupling-coefficient dispersion and Kerr nonlinearity

S. Abbagari, A. Houwe, H. Rezazadeh, A. Bekir, S. Y. Doka


In this paper, we studies chirped solitary waves in two-Core optical fibers with coupling-coefficient dispersion and intermodal dispersion. To construct chirp soliton, the couple of nonlinear Schrödinger equation which describing the pulses propagation along the two-core fiber have been reduced to one equivalent equation. By adopting the traveling-waves hypothesis, the exact analytical solutions of the GNSE were obtained by using three relevant mathematical methods namely the auxiliary equation method, the modified auxiliary equation method and the Sine-Gordon expansion approach. Lastly, the behavior of the chirped like-soliton solutions were discussed and some contours of the plot evolution of the bright and dark solitons are obtained.


Two-core optical fiber; soliton solutions; Nonlinear Schrödinger equation.

Full Text:



G. Meltz, J. R. Dunphy, W. W. Morey, and E. Snitzer, Crosstalk fiber-optic temperature sensor, Appl. Opt. 22 (1983) 464,

Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Soliton Shape and Mobility Control in Optical Lattices, Prog. Opt. 52 (2009) 63,

M. Arshad, A. R. Seadawy, and D. Lu, Bright-dark solitary wave solutions of generalized higher-order nonlinear Schrodinger equation and its applications in optics, ¨ J. Electromagn. Waves Appl. 31 (2017) 1711,

P. G. Kevrekidis and D. J. Frantzeskakis, Solitons in coupled nonlinear Schrodinger models: A survey of recent developments, Rev. Phys. 1 (2016) 140,

A. Biswas, Soliton solutions of the perturbed resonant nonlinear Schrodinger’s equation with full nonlinearity by semi-inverse variational principle. Quantum Phys. Lett. 1 (2013) 79.

M. Liu and P. Shum, Generalized coupled nonlinear equations for the analysis of asymmetric two-core fiber coupler, Opt. Express 11 (2003) 116,

B. A. Malomed, I. M. Skinner, and R. S. Tasgal, Solitons in a nonlinear optical coupler in the presence of the Raman effect, Opt. Commun. 139 (1997) 247,

M. S. Osman et al., The unified method for conformable time fractional Schrodinger equation with perturbation terms, Chin. J. Phys. 56 (2018) 2500, 9. M. S. Osman, H. Rezazadeh, M. Eslami, A. Neirameh, and M. Mirzazadeh, Analytical study of solitons to Benjamin-BonaMahony-Peregrine equation with power law nonlinearity by using three methods, UPB Sci. Bull. A 80 (2018) 267.

M. Hesami et al., Generation of bright spatial quasi-solitons by arbitrary initial beam profiles in local and nonlocal (1+1)-Dimensional nonlinear media, Optik 202 (2020) 163504,

A. Biswas et al., Resonant optical solitions with dualpower law nonlinearity and fractional temporal evolution, Optik 165 (2018) 233,

M. Hesami, M. Avazpour, and M. M. Mendez Otero, Transforming higher order bright and dark solitons to the first order solitons in Kerr medium: A review, Optik 202 (2020) 163695,

M. Eslami, H. Rezazadeh, M. Rezazadeh, and S. S. Mosavi, Exact solutions to the space-time fractional Schrodinger-Hirota equation and the space-time modified KDV ZakharovKuznetsov equation, Opt. Quantum Electron. 49 (2017) 279,

H. Rezazadeh, New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity, Optik 167 (2018) 218,

H. Rezazadeh, H. Tariq, M. Eslami, M. Mirzazadeh, and Q. Zhou, New exact solutions of nonlinear conformable time-fractional Phi-4 equation, Chin. J. Phys. 56 (2018) 2805,

L.-C. Zhao, S.-C. Li, and L. Ling, Rational W-shaped solitons on a continuous-wave background in the Sasa-Satsuma equation, Phys. Rev. E 89 (2014) 023210,

A. W. Snyder, Coupled-Mode Theory for Optical Fibers, J. Opt. Soc. Am. 62 (1972) 1267,

S. Shamseldeen, M. S. A. Latif, A. Hamed, and H. Nour, New soliton solutions in dualcore optical fibers, Commun. Math. Model. Appl. 2 (2017) 39.

Z. Wang et al., Coupling in dual-core photonic bandgap fibers: theory and experiment, Opt. Express 15 (2007) 4795,

T. S. Raju, P. K. Panigrahi, and K. Porsezian, Nonlinear compression of solitary waves in asymmetric twin-core fibers, Phys. Rev. E 71 (2005) 026608,


M. Younis, S. T. R. Rizvi, Q. Zhou, A. Biswas, and M. Belic, Optical solitons in dual-core fibers with G’/G-expansion scheme, J. Optoelectron. Adv. Mater. 17 (2015) 505.

J. Zhang and C. Dai, Bright and dark optical solitons in the nonlinear Schrodinger equation with fourth-order dispersion and cubic-quintic nonlinearity, Chin. Opt. Lett. 3 (2005) 295.

H. Alphonse et al., Optical solitons for higher-order nonlinear Schrodinger equation with three exotic integration architectures, Optik 179 (2019) 861,

M. M. A. Khater, R. A. M. Attia, and D. Lu, Modified Auxiliary Equation Method versus Three Nonlinear Fractional Biological Models in Present Explicit Wave Solutions, Math. Comput. Appl. 24 (2019) 1,

R. A. M. Attia, D. Lu, and M. M. A. Khater, Chaos and Relativistic Energy-Momentum of the Nonlinear Time Fractional Duffing Equation, Math. Comput. Appl. 24 (2019) 10,

M. S. Osman, D. Lu, M. M. A. Khater, and R. A. M. Attia, Complex wave structures for abundant solutions related to the complex Ginzburg-Landau model, Optik 192 (2019) 162927,

C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A 224 (1996) 77,

Z. Yan and H. Zhang, New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics, Phys. Lett. A 252 (1999) 291,

L.-H. Zhang, Travelling wave solutions for the generalized Zakharov-Kuznetsov equation with higher-order nonlinear terms, Appl. Math. Comput. 208 (2009) 144,



  • There are currently no refbacks.

REVISTA MEXICANA DE FÍSICA, year 67, issue 3, May-June 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946,, e-mail: Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, May 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License