Factorization method for some inhomogeneous Lienard equations

O. Cornejo Perez, S. C. Mancas, H. C. Rosu, C. A. Rico-Olvera


The factorization of inhomogeneous Li\'enard equations is performed showing that through the factorization conditions involved in the method one can obtain forcing terms for which closed-form solutions exist. Because of the reduction of order feature of factorization, the solutions are simultaneously solutions of first-order differential equations with polynomial nonlinearities. Several illustrative examples of such solutions are presented, generically having rational parts and consequently singularities.


Factorization; Inhomogeneous; Li\'enard equation; Abel equation; Riccati equation

Full Text:



M.~Lakshmanan and S.~Rajasekar,

Nonlinear Dynamics: Integrability, Chaos, and Patterns, Springer, Heidelberg 2003.

T.~Harko and S.-D.~Liang,

Exact solutions of the Li'enard and generalized Li'enard type ordinary nonlinear differential equations obtained by

deforming the phase space coordinates of the linear harmonic oscillator,

J. Eng. Math. {bf 98} (2016) 93-111.

B.~van der Pol and J.~van der Mark, Frequency demultiplication, Nature {bf 120} (1927) 363–364.

H.C.~Rosu and O. Cornejo-P'erez,

Supersymmetric pairing of kinks for polynomial nonlinearities,

Phys. Rev. E {bf 71} (2005) 046607.

O.~Cornejo-P'erez and H.C.~Rosu,

Nonlinear second order ode's: Factorizations and particular solutions,

Prog. Theor. Phys. {bf 114} (2006) 533-538.

H.C. Rosu, O. Cornejo-P'erez, M. P'erez-Maldonado, J.A. Belinch'on,

Extension of a factorization method of nonlinear second order ODE's with variable coefficients,

Rev. Mex. F'{i}s. {bf 63} (2017) 218-222.

D.S.~Wang and H.~Li,

Single and multi-solitary wave solutions to a class of nonlinear evolution equations,

J. Math. Anal. Appl. {bf 343} (2008) 273-298.

V.K.~Chandrasekar, M.~Senthilvelan, and M.~Lakshmanan,

New aspects of integrability of force-free Duffing–van der Pol oscillator and related nonlinear systems,

J. Phys. A: Math. Gen. {bf 37} (2004) 4527-4534.


A closed form solution to a special normal form of Riccati equation,

Advances in Pure Mathematics {bf 1} (2011) 295


Asymptotic solutions of inhomogeneous differential equations having a turning point,

Stud. Appl. Math. (2020) 1–37. %(2020) arXiv:2005.08152.

DOI: https://doi.org/10.31349/RevMexFis.67.443


  • There are currently no refbacks.

REVISTA MEXICANA DE FÍSICA, year 67, issue 3, May-June 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946, https://rmf.smf.mx/ojs/rmf, e-mail: rmf@ciencias.unam.mx. Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, May 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License