A charged perfect fluid model with high compactness

G. Estevez-Delgado, J. Estevez-Delgado, M. Pineda Duran, N. Montelongo García, J.M. Paulin-Fuentes

Abstract


A relativistic, static and spherically symmetrical stellar model is presented, constituted by a perfect charged fluid. This represents a generalization to the case of a perfect neutral fluid, whose construction is made through the solution to the Einstein-Maxwell equations proposing a form of gravitational potential  $g_{tt}$ and the electric field. The choice of electric field implies that this model supports values of compactness
$u=GM/c^2R\leq 0.5337972212$, values higher than the case without electric charge ($u\leq 0.3581350065$), being this feature of relevance to get to represent compact stars. In addition, density and pressure are positive functions, bounded and decreasing monotones, the electric field is a monotonously increasing function as well as satisfying the condition of causality so the model is physically acceptable. In a complementary way, the internal behavior of the hydrostatic functions and their values are obtained taking as a data the corresponding to a star of $1 M_\odot$,for different values of the charge parameter, obtaining an interval for the central density $\rho_c\approx (7.9545,2.7279) 10^{19}$ $ Kg/m^3$ characteristic of compact stars.

Keywords


Exact solutions; perfect fluid; stars solutions.

Full Text:

PDF


DOI: https://doi.org/10.31349/RevMexFis.65.382

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física

e-ISSN: In Process

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52-55) 5622-4946, (52-55) 5622-4840. rmf@ciencias.unam.mx