A comparative analysis of the RC circuit with local and non-local fractional derivatives

J. Juan Rosales García, J. David Filoteo, Andrés González


This work is devoted to investigate solutions to RC circuits using four different types of time fractional diferential operators of order  0 < γ ≤ 1. The fractional derivatives considered are, Caputo, Caputo-Fabrizio, Atangana-Baleanu and the conformable derivative. It is shown that Atangana-Baleanu fractional derivative (non-local), and the conformable (local) derivative could describe a wider class of physical processes then the Caputo and Caputo-Fabrizio. The solutions are exactly equal for all four erivatives only for the case γ=1.


Electrical circuits; conformable derivative; fractional derivative.

Full Text:


DOI: https://doi.org/10.31349/RevMexFis.64.647


  • There are currently no refbacks.

Revista Mexicana de Física

ISSN: 2683-2224 (on line), 0035-001X (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840. rmf@ciencias.unam.mx