Highly dispersive optical solitons having Kerr law of refractive index with Laplace-Adomian decomposition

O. González Gaxiola, Anjan Biswas, Ali Saleh Alshomrani

Abstract


This paper studies highly dispersive optical solitons, having Kerr law of refractive index, numerically. The adopted scheme is Laplace-Adomian decomposition method. Bright soliton solutions are displayed along with their respective error analysis.

Keywords


Nonlinear Schr\"{o}dinger equation; Bright solitons; Higher-order dispersion; Laplace-Adomian decomposition method

Full Text:

PDF

References


Kudryashov N A. Construction of nonlinear differential equations for description of propagation pulses in optical fiber. Optik 2019; 192: 162964.

Kudryashov N A. Solitary and periodic waves of the hierarchy for propagation pulse in optical fiber. Optik 2019; 194: 163060.

Biswas Anjan, Kara A H, Alshomrani A S, Ekici M, Zhou Q, Belic M R. Conservation laws for highly dispersive optical solitons.

Optik 2019; 199: 163283.

Rehman H U, Ullah N, Imran M A. Highly dispersive optical solitons using Kudryashov's method. Optik 2019; 199: 163349.

Abazari R, Jamshidzadeh S, Wang G. Mathematical modeling of DNA vibrational dynamics and its solitary wave solutions. Rev. Mex. de Física 2018; 64: 590-597.

Biswas Anjan, Ekici M, Sonmezoglu A, Belic M R. Highly dispersive optical solitons with Kerr law nonlinearity by F-expansion. Optik 2019; 181: 1028-1038.

Kohl R W, Biswas Anjan, Ekici M, Zhou Q, Khan S, Alshomrani A S, Belic M R. Highly dispersive optical soliton perturbation with Kerr law bysemi-inverse variational principle. Optik 2019; 199: 163226.

Biswas Anjan, Ekici M, Sonmezoglu A, Belic M R. Highly dispersive optical solitons with kerr law nonlinearity by extended Jacobi's elliptic function expansion. Optik 2019; 183: 395-400.

Adomian G. Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston MA 1994.

Khuri S A. A Laplace decomposition algorithm applied to class of nonlinear differential equations. J Math Appl 2001; 4: 141-155.

Rach R. A convenient computational form for the Adomian polynomials. J Math Anal Appl 1984; 102: 415-419.

Wazwaz A M. A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl Math Comput 2000; 111: 33-51.




DOI: https://doi.org/10.31349/RevMexFis.66.291

Refbacks

  • There are currently no refbacks.


REVISTA MEXICANA DE FÍSICA, year 67, issue 2, March-April 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946, https://rmf.smf.mx/ojs/rmf, e-mail: rmf@ciencias.unam.mx. Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, March 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License