### The generalized Kudryashov method for the nonlinear fractional partial differential equations with the beta-derivative

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

J.F. Gomez-Aguilar, Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel. Physica A: Stat. Mech. Appl., 465 (2017) 562-572.

D. Kumar, J. Singh and D. Baleanu, A hybrid computational approach for Klein-Gordon equations on Cantor sets. Nonlinear Dyn., 87 (2017) 511-517.

K.M. Owolabi and A. Atangana, Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction diffusion systems. Comput. Appl. Math., 1 (2017) 1-24.

H.M. Srivastava, D. Kumar and J. Singh, An efficient analytical technique for fractional model of vibration equation. Appl. Math. Model., 45 (2017) 192-204.

K.M. Owolabi and A. Atangana, Numerical simulation of noninteger order system in subdiffusive, diffusive, and superdiffusive scenarios. J. Comput. Nonlinear Dyn., 12 (2017) 1-10.

I. Podlubny, Fractional Differential Equations, Academic Press, 1999.

R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000) 1-77.

M. Caputo and M. Fabricio, A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl., 1 (2015) 73-85.

G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 51(9) (2006) 1367-1376.

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci., 20 (2016) 763-769.

S. Zhang and H.Q. Zhang, Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A, 375 (2011) 1069-1073.

B. Lu, The first integral method for some time fractional differential equations. J. Math. Anal. Appl., 395 (2012) 684-693.

Y. Pandir, Y. Gurefe and E. Misirli, The extended trial equation method for some time-fractional differential equations. Discrete Dyn. Nat. Soc., 2013 (2013) 491359.

Y. Pandir, Y. Gurefe and E. Misirli, New exact solutions of the time-fractional Nonlinear dispersive KdV equation. Int. J. Model. Opt., 3(4) (2013) 349-352.

N. Das, R. Singh, A.M. Wazwaz and J. Kumar, An algorithm based on the variational iteration technique for the Bratu-type and the Lane-Emden problems. J. Math. Chem., 54 (2016) 527-551.

X. J. Yang and Y.D. Zhang, A new Adomian decomposition procedure scheme for solving local fractional Volterra integral equation. Adv. Inf. Tech. Manag., 1(4) (2012) 158-161.

H. Jafari and H.K. Jassim, Numerical solutions of telegraph and Laplace equations on cantor sets using local fractional Laplace decomposition method. Int. J. Adv. Appl. Math. Mech., 2 (2015) 144-151.

M.S. Hu, R.P. Agarwal and X.J. Yang, Local fractional Fourier series with application to wave equation in fractal vibrating string. Abstract. Appl. Anal., 2012 (2012) 567401.

G.H. Gao, Z.Z. Sun and Y.N. Zhang, A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J. Comput. Phys., 231(7) (2012) 2865-2879.

W. Deng, Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal., 47(1) (2008) 204-226.

R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative. J. Comput. Appl. Math., 264 (2014) 65-70.

Y. Cenesiz and A. Kurt, The solution of time fractional heat equation with new fractional derivative definition. In 8th International Conference on Applied Mathematics, Simulation and Modelling., 2014 (2014) 195-198.

A. Atangana, D. Baleanu and A. Alsaedi, New properties of conformable derivative. Open Math., 13 (2015) 1-10.

Y. Cenesiz, D. Baleanu, A. Kurt and O. Tasbozan, New exact solutions of Burgers' type equations with conformable derivative. Waves Random Complex Media, 27(1) (2016) 103-116.

W.S. Chung, Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math., 290 (2015) 150-158.

A. Atangana, D. Baleanu and A. Alsaedi, Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal. Open Phys., 14 (2016) 145-149.

H. Yépez-Martínez, J.F. Gómez-Aguilar and A. Atangana, First integral method for non-linear differential equations with comformable derivative. Math. Model. Nat. Phenom., 13 (2018) 1-22.

H. Yépez-Martínez and J.F. Gómez-Aguilar, Fractional sub-equation method for Hirota-Satsuma-coupled KdV equation and coupled mKdV equation using the Atangana’s conformable derivative. Waves Random Complex Media, 29(4) (2019) 678-693.

H. Yépez-Martínez and J.F. Gómez-Aguilar, Optical solitons solution of resonance nonlinear Schrödinger type equation with Atangana’s-conformable derivative using sub-equation method. Waves Random Complex Media, DOI: 10.1080/17455030.2019.1603413.

B. Ghanbari and J.F. Gómez-Aguilar, The generalized exponential rational function method for Radhakrishnan-Kundu-Lakshmanan equation with -conformable time derivative. Rev. Mex. Fis., 65(5) (2019) 503-518.

ST. Demiray, Y. Pandir and H. Bulut, Generalized Kudryashov method for time-Fractional differential equations. Abstr. Appl. Anal., 2014 (2014) 901540.

ST. Demiray and H. Bulut, Generalized Kudryashov method for nonlinear fractional double sinh-Poisson equation. J. Nonlinear Sci. Appl., 9 (2016) 1349-1355.

A.A. Gaber, A.F. Aljohani, A. Ebaid and J. Tenreiro Machado, The generalized Kudryashov method for nonlinear space-time fractional partial differential equations of Burgers type. Nonlinear Dyn., 95 (2019) 361-368.

DOI: https://doi.org/10.31349/RevMexFis.66.771

### Refbacks

- There are currently no refbacks.

**Revista Mexicana de Física**

**ISSN: 2683-2224** (on line), **0035-001X** (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.

Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.

Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.

Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.

Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840. rmf@ciencias.unam.mx