Theoretical studies of the electron paramagnetic resonance parameters and local structures for Cu2+ in (100-2x)TeO2-xAg2O-xWO3 glasses

H.-N. Dong, R. Zhang

Abstract


The electron paramagnetic resonance (EPR) parameters and local structures for Cu2+ in (100-2x)TeO2-xAg2O-xWO3 (TAW) (7.5 ≤ x ≤ 30 mol %) glasses are quantitatively studied for distinct modifier concentrations x. The octahedral Cu2+ centers are subject to the medium tetragonal elongations of about 2% along the C4 axis due to the Jahn-Teller effect. By utilizing only three adjusted coefficients a, b and ω, the quantities (Dq, k, t and κ) can be suitably characterized by the Fourier type functions, which reasonably account for the experimental concentration dependences of the d-d transition bands and EPR parameters. The calculation results are discussed, and the mechanisms of the above concentration dependences of these quantities are illustrated by the modifications of the local structures and the electron cloud distribution around the Cu2+ dopant with the variations of the concentration x.


Keywords


Cu2+, TeO2−Ag2O−WO3 glasses, Defect structures, Electron paramagnetic resonance

Full Text:

PDF


DOI: https://doi.org/10.31349/RevMexFis.67.1

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física

ISSN: 2683-2224 (on line), 0035-001X (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840. rmf@ciencias.unam.mx