Design and simulation of a control for the opening and closing of the side ventilation windows in a greenhouse

E. M. Gutierrez Arias, J. E. Flores Mena, G. Perez Osorio, M. M. Morin Castillo, G. Pantle Cuatle, E. J. Cordova Gutierrez


An optimal control for the opening and closing of the side ventilation windows of a greenhouse can be obtained from a mathematical model of the crop and the greenhouse. In the greenhouse model, control input is the ventilation, and to carry out the instrumentation in the immediate future, this term we related with the aperture of the lee and windward side ventilation windows. We consider a model with four states variables: the structural biomass of leaves, the structural biomass of fruit, the nonstructural biomass (nutrients) and the carbon dioxide. Even though the control of carbon dioxide concentration inside the greenhouse is not directly addressed in this study, optimal control of the opening and closing of vents significantly complements the regulation of the carbon dioxide concentration. To apply the optimal control theory, we select a functional cost in order to increase the benefit of the farmer.


optimal control, dynamic model, microclimate, performance index, opening and closing of the side ventilation windows.

Full Text:



A. M. Abdel-Ghany and T. Kozai, Dynamic modeling of the environment in a naturally ventilated, fog-cooled greenhouse, Renewable Energy, 31 (2006) 1521-1539, DOI:


G. C. Monteil, Issanchou, and M. Amouroux, Modele energetique

de la serre agricole, Journal Physique III, 1 (1991) 429-454, DOI: .

M. K. Ghosal and G. N. Tiwari, Mathematical modeling for greenhouse heating by using thermal curtain and geothermal energy, Solar Energy, 76 (2004) 603-613,

M. J. Gupta and P. Chandr, Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control, Energy,27 (2002) 777-794,

F. Lafont and J. F. Balmat, Optimized fuzzy control of a greenhouse, Fuzzy Set and Systems, 128 (2002) 47–59,

W. Luo, H. F. Zwart, J. Dail, X. Wang, C. Stanghellini, and C. Bu, Simulation of greenhouse management in the subtropics, Part I : Model validation and scenario study for the winter season, Biosystems Engineering,90 (2005) 307-318,

P. Salgado and J. B. Cunha, Greenhouse climate hierarchical fuzzy modelling, Control Engineering Practice,13 (2005) 613-628,

G. Singh, P. P. Singh, P. P. S. Lubana, and K. G. Singh, Formulation and validation of a mathematical model of the microclimate of greenhouse, Renewable Energy,31 (2006) 1541-1560,

T. Takakura, A. Jordann, and L. Boyd, Dynamic simulation of plant growth and environment in the greenhouse, Trans. ASAE,14 (1971) 964-971,

Yuanping Su, Lihong Xu, Greenhouse Climate Model for Control Design, 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), (2015) 1-6.


N. Bennis, J. Duplaix, G. Enea, M. Haloua, and H. Youlal, Greenhouse climate modelling and robust control, Computers and Electronics in Agriculture,61 (2008) 96–107,

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, (Society for Industrial and Applied Mathematics, Philadelphia, 1994), pp. 148-150.

M. S. Branicky, Multiple lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on automatic control, 43 (1998) 475-482, DOI: 10.1109/9.664150.

Z. S. Chalabi, B. J. Bailey, and D. J. Wilkinson, A real time optimal control algorithm for greenhouse heating, Computers and electronics in Agriculture, 15 (1996) 1–13,

Marwa Mekki, Osman Abdallah, Magdi Amin B. M., Moez Eltayeb, TafaoulAbdalfatah, Amin Babiker,Greenhousemonitoring and control system based on wireless Sensor Network, International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE),(2015). doi:10.1109/ICCNEEE.2015.7381396.

Wei Cao, Ge Xu, Yaprak, E., Lockhart, R., Taiqian Yang, Yanqing Gao, Using Wireless Sensor Networking (WSN) to Manage Micro-Climate in Greenhouse, International Conference on Mechtronic and Embedded Systems and Applications, MESA 2008. IEEE/ASME: (2008) 636 - 641. DOI:10.1109/MESA.2008.4735706 .

Takehiko Hoshi, Ryosuke Ohata, Katsuyoshi Watanabe and Ryuji Osuka, A Gadget-Based Information Management System for Environmental Measurement and Control in Greenhouses, SICE Annual Conference, (2011), 2801 - 2805, .

Jin Yulong, Yang Jiaqiang, Design an Intelligent Environment Control System for Greenhouse Based on RS485, in Second International Conference on Digital Manufacturing and Automation, 1 (2011) 361-364, DOI Bookmark: 10.1109/ICDMA.2011.95 .

G. van Straten, G. van Willigenburg, E. van Henten, R. van Ooteghem, Optimal Control of Greenhouse Cultivation, 1st ed. (Taylor and Francis Group, , Boca Raton, 2011), pp. 123.

P.J.M. Van Beveren, J. Bontsema, G. Van Straten, E.J. Van Henten, Minimal heating and cooling in a modern rose greenhouse, Applied Energy, 137 (2014) 97-109,

P.J.M. van Beveren, J. Bontsema, G. van Straten, E.J. van Henten, Optimal control of greenhouse climate using minimal energy and grower defined bounds, Applied Energy, 159 (2015)


Jun Du, Pradeep Bansal, Bo Huang, Simulation model of a greenhouse with a heat-pipe heating system, Applied Energy, 93 (2012) 268-276,

R. F. Tap, Economics-based Optimal Control of Greenhouse Tomato Crop Production. Dynamic model for optimal control of greenhouse tomato crop production, ( Thesis Wageningen Agricultural University. ISBN 90-5808-236-9. 2000), pp. 31.

E. J. van Henten, Thesis: Greenhouse climate management: An optimal control approach, (Wageningen Wageningen University Research, Netherlands, ISBN 9789054853213 - 329, 1994).



  • There are currently no refbacks.

Revista Mexicana de Física

ISSN: 2683-2224 (on line), 0035-001X (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840.