Generador de microondas con fibra láser de Brillouin estabilizado de bajo costo para sistemas de radio sobre fibra

J. L. Bueno Escobedo, M.C. Maya-Sanchez, S. V. Miridonov, A.A. Fotiadi, V. V. Spirin

Abstract


Proponemos un nuevo oscilador optoelectrónico basado en la dispersión estimulada de Brillouin para generar una portadora de microondas, ultra estrecha y estable, como lo muestra su bajo ruido de fase. Un láser de Brillouin sub-kHz de anillo de fibra con estabilización activa y encadenamiento por inyección a su bombeo DFB (del inglés, Distributed Feedback Laser) se propone como técnica básica para la generación de microondas. El oscilador optoelectrónico genera una señal portadora de ~10.946 GHz, con un ancho de banda de 300 Hz a 3 dB. Las señales armónicas parasitas están a ±50 kHz, ±450 kHz and ±900 kHz, con un nivel de 45-50 dB desde el pico de la portadora. El ruido de fase está por debajo de -90 dBc/Hz a un desplazamiento de frecuencia de la portadora de 10 kHz, este nivel se observa en una trasmisión de prueba a través de una fibra óptica de 20 Km de longitud

Keywords


Radio sobre fibra; encadenamiento por auto-inyección; oscilador optoelectrónico

Full Text:

PDF

References


C. Lim et al., "Evolution of radio-over-fiber technology", J. Lightwave Technology, 37 (2019) 1647.

R. Singh et al., “A review on radio over fiber communication system”, Int. J. Enhanced Research in Management & Computer Applications, 6 (2017) 23.

J. Yao, “Microwave photonics”, J. Lightwave Technol. 27 (2009) 314.

M. Merklein et al., “Widely tunable, low phase noise microwave source based on a photonic chip”, Opt. Lett. 41 (2016) 4633. https://doi.org/10.1364/OL.41.004633

Z. Xie et al., “Tunable dual frequency optoelectronic oscillator with low intermodulation based on dual-parallel Mach-Zehnder modulator”, Opt. Express 24 (2016) 30282. https://doi.org/10.1364/OE.24.030282

T. Schneider et al., “Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems”, Electronics Lett. 40 (2004) 1500. http://dx.doi.org/10.1049/el:20046461

G. P. Agrawal, Nonlinear fiber optics, 3rd ed. (Academic Press, San Diego, 2001).

X. S. Yao, “High-quality microwave signal generation by use of Brillouin scattering in optical fibers”, Opt. Lett. 22 (1997) 1329. https://doi.org/10.1364/OL.22.001329

M. Shi et al., “Generation and phase noise analysis of a wide optoelectronic oscillator with ultra-high resolution based on stimulated Brillouin scattering”, Opt. Express 26 (2018) 16113. https://doi.org/10.1364/OE.26.016113.

M. Shi et al., “Brillouin-based dual-frequency microwave signals generation using polarization multiplexing modulation”, Opt. Express 27 (2019) 24847. https://doi.org/10.1364/OE.27.024847.

M. Shi et al., “Generation and phase noise analysis of a wide optoelectronic oscillator with ultra-high resolution based on stimulated Brillouin scattering”, Opt. Express 26 (2018) 16113. https://doi.org/10.1364/OE.26.016113.

V.V. Spirin et al., “Intensity noise in SBS with injection locking generation of Stokes seed signal”, Opt. Express 14 (2006) 8328. https://doi.org/10.1364/OE.14.008328.

S. Preussler and T. Schneider, “Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing”, Opt. Eng. 55 (2015) 031110. https://doi.org/10.1117/1.OE.55.3.031110.

Y. Liu et al., “Single-longitudinal-mode triple-ring brillouin fiber laser with a saturable absorber ring resonator”, J. Lightwave Technol. 35 (2017) 1744. https://doi.org/10.1109/JLT.2017.2664071.

W. loh, “Dual-microcavity narrow-linewidth Brillouin laser”, Optica 2 (2015) 225. https://doi.org/10.1364/OPTICA.2.000225.

L. Rossi et al., “Analysis of enhanced-performance fibre Brillouin ring laser for Brillouin sensing applications”, Opt. Express 27 (2019) 29448. https://doi.org/10.1364/OE.27.029448.

V.V. Spirin et al., “Stabilizing DFB laser injection-locked to an external fiber-optic ring resonator”, Opt. Express 28 (2020) 478. https://doi.org/10.1364/OE.28.000478.

V.V. Spirin et al., “Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser”, Laser Physics Lett. 9 (2012) 377.

C.A. López-Mercado et al., “Locking of the DFB laser through fiber optic resonator on different coupling regimes”, Opt Commun., 359 (2016) 195. https://doi.org/10.1016/j.optcom.2015.09.076.

V.V. Spirin et al., “Single cut technique for adjustment of doubly resonant Brillouin laser cavities”, Opt. Lett. 38 (2013) 2528. https://doi.org/10.1364/OL.38.002528.

D.A. Korobko et al., “Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator”, Opt. Commun., 405 (2017) 253. https://doi.org/10.1016/j.optcom.2017.08.040.

http://www.corning.com/opticalfiber/index.as.

A. Done et al., “Active Frequency Stabilization Method for Sensitive Applications Operating in Variable Temperature Environments”, Adv. Elect. Comp. Eng., 18 (2018) 21. https://doi.org/10.4316/AECE.2018.01003.

C.S. Park et al., “Multiple RF-carrier Generation Using the Wavelength-dependent Stokes Shift and Selective Amplification of Stimulated Brillouin Scattering”, Int. Topical Meeting on Microwave Photonics (Conference 2005, Seoul, Korea, Korea). https://doi.org/10.1109/MWP.2005.203612.

Microwave Signal Generators, Keysight Technologies (https://www.keysight.com/mx/en/home.html)




DOI: https://doi.org/10.31349/RevMexFis.67.109

Refbacks

  • There are currently no refbacks.


REVISTA MEXICANA DE FÍSICA, year 67, issue 2, March-April 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946, https://rmf.smf.mx/ojs/rmf, e-mail: rmf@ciencias.unam.mx. Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, March 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License