Analytical solution to Scholte’s secular equation for isotropic elastic media

J. Antúnez-García, D. H. Galván, J. Guerrero-Sánchez, F. N. Murrieta-Rico, R. I. Yocupicio-Gaxiola, S. Fuentes-Moyado

Abstract


In terms of a method based on Cauchy integrals, we have obtained a robust analytic expression to predict a unique physical solution for the Scholte slowness in all range of possible elastic and isotropic media. Proper analysis of the discontinuities of the secular Scholte equation allows the identification of the velocity of the evanescent wave in one of three possible regimes. When the liquid phase tends to vanish, it was observed: a) the Rayleigh wave solution or the free surface limit, and b) the rarefied fluid medium limit, where there exists a gradual extinction of the Scholte wave as both the density and velocity of the fluid decrease. In general terms, the results show that the propagation speed of a Scholte wave is less than or equal to that of a Rayleigh wave.


Keywords


Rayleigh wave; Scholte wave; Cauchy integrals

Full Text:

PDF

References


C. B. Park, R. D. Miller, J. Xia, Multichannel analysis of surface

waves, GEOPHYSICS 64 (1999) 800–808.

J. Xia, R. D. Miller, C. B. Park, Estimation of nearsurface shearwave

velocity by inversion of Rayleigh waves, Geophysics 64

(3) (1999) 691–700.

D. Jongmans, D. Demanet, The importance of surface waves

in vibration study and the use of Rayleigh waves for estimating

the dynamic characteristics of soils, Engineering Geology

–113.

G. Athanasopoulos, P. Pelekis, G. Anagnostopoulos, Effect of

soil stiffness in the attenuation of Rayleigh-wave motions from

field measurements, Soil Dynamics and Earthquake Engineering

(2000) 277–288.

C. G. Lai, G. J. Rix, S. Foti, V. Roma, Simultaneous measurement

and inversion of surface wave dispersion and attenuation

curves, Soil Dynamics and Earthquake Engineering 22 (2002)

–930.

J.W. S. Rayleigh, On waves propagated along the plane surface

of an elastic solid, Proc. London Math. Soc. 17 (1885) 4–11.

M. Rahman, J. R. Barber, Exact expressions for the roots of the

secular equation for rayleigh waves, Journal of Applied Mechanics

(1995) 250–252.

L. Knopoff, On rayleigh wave velocity, Bull.Seismol.Soc.Am. 42

(1952) 307–308.

M. Hayes, R. S. Rivlin, A note on the secular equation for

Rayleigh Waves, ZAMP 13 (1962) 80–83.

H. Mechkour, The exact expressions for the roots of Rayleigh

wave equation, BSG Proceedings 8 (2003) 96–104.

P. Malichewsky, Short Note A note on Rayleigh-wave velocities

as a function of the material parameters, Geofísica Internacional

(2004) 507–509.

X.-F. Liu, Y.-h. Fan, A New Formula for the Rayleigh Wave

Velocity, Advanced Materials Research 452 (2012) 233–237.

P. G. Malischewsky, Comment to “A new formula for the velocity

of Rayleigh” waves by D. Nkemzi [Wave Motion 26 (1997)

-205],Wave Motion 31 (2000) 93–96.

M. Romeo, Rayleigh waves on a viscoelastic solid half-space,

The Journal of the Acoustical Society of America 110

(2001) 59–67.

G. Caviglia, A. Morro, Inhomogeneous waves in solids and fluids,

st Edition, Vol. 4,World scientific publishing, New Jersey,

D. Nkemzi, A new formula for the velocity of rayleigh waves,

Wave Motion 26 (1997) 199–205.

J. Antúnez-García, Sobre la ecuación característica de las ondas

Rayleigh y Stoneley, Master’s thesis, CICESE, Ensenada,

Baja California, México (2003).

P. C. Vinh, Scholte-wave velocity formulae, Wave Motion 50 (2013) 180–190.

R. Stoneley, Elastic waves at the surface of separation of two

solids, Proc. Roy. Soc. London 106 (1924) 416–428.

J. G. Scholte, The range of existence of Rayleigh and Stoneley

waves, Geophysical Journal International 5 (1947) 120–126.

I. A. Viktorov, Rayleigh and Lamb waves, 1st Edition, Plenum

Press, New York, 1967.

E. Strick, A. S. Ginzbarg, Stoneley-wave velocities for a fluidsolid

interface, Bull. Seismol. Soc. Am. 46 (1956) 281–292.

E. E. Burniston, C. E. Siewert, The use of Riemann problems

in solving a class of transcendental equations, Mathematical

Proceedings of the Cambridge Philosophical Society 73 (1973)

–118.

P. Rae, D. Dattelbaum, The properties of

poly(tetrafluoroethylene) (PTFE) in compression, Polymer 45

(22) (2004) 7615–7625.

D. R. Lide, CRC Handbook of Chemistry & Physics 2008 -

, 89th Edition, Taylor & Francis Group, 2008.

C. R. Bently, The Ross Ice Shelf: Glaciology and Geophysics

Antartic Research Series: Paper 3, Vol. 42, American Geophysical

Union, Florida Ave., N. W., 1984.

F. J. Millero, History of the Equation of State of Seawater,

Oceanography 23 (2010) 18–33.

G. S. K. Wong, Speed of sound in seawater as a function

of salinity, temperature, and pressure, The Journal of

the Acoustical Society of America 97 (1995) 1732.

P. Henrici, Computational Complex Analysis, Vol. II, Willey,

New York, 1984.

E. E. Burniston, C. E. Siewert, Exact analytical solutions

of the transcendental equation α sin⁡ζ=ζ, SIAM Journal on

Applied Mathematics 24 (1973) 460–466.




DOI: https://doi.org/10.31349/RevMexFis.67.54

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física

ISSN: 2683-2224 (on line), 0035-001X (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840. rmf@ciencias.unam.mx