First principles calculation of structural, electronic and optical properties of (001) and (110) growth axis (InN)/(GaN)n superlattices

B. Bachir Bouiadjra, N. Mehnane, N. Oukli

Abstract


Based on the full potential linear muffin-tin orbitals (FPLMTO) calculation within density functional theory, we systematically investigate the electronic and optical properties of (100) and (110)-oriented (InN)/(GaN)n zinc-blende superlattice with one InN monolayer and with different numbers of GaN monolayers. Specifically, the electronic band structure calculations and their related features, like the absorption coefficient and refractive index of these systems are computed over a wide photon energy scale up to 20 eV. The effect of periodicity layer numbers n on the band gaps and the optical activity of (InN)/(GaN)n SLs in the both  growth axis (001) and (110) are examined and compared. Because of prospective optical aspects of (InN)/(GaN)n such as light-emitting applications, this theoretical study can help the experimental measurements.


Keywords


Indium nitride; Gallium nitride; Growth axis; InN/GaN Superlattices; Optical properties

Full Text:

PDF

References


N. Mehnane, N. Oukli , M. Ouki, Chin. J. Phys. 55 (2017) 1275, https://doi.org/10.1016/j.cjph.2017.06.004.

A. Laref, A. Altujar, S. Laref, S.J. Luo, Sol. Energy. 142 (2017) 231, https://doi.org/10.1016/j.solener.2016.12.009.

I. Gorczyca, T. Suski, N. E. Christensen, A. Svane, Cryst. Growth Des. 12 (2012) 3521; https://doi.org/10.1021/cg300315r.

M. Oukli, N. Mehnane, N. Oukli, B. Bachir Bouiadjra, H. Belghoul, Phys. E 114 (2019)113653, https://doi.org/10.1016/j.physe.2019.113653.

P. Strak, P. Kempisty, K. Sakowski, S. Krukowski, J. Cryst. Growth. 401 (2014) 652, https://doi.org/10.1016/j.jcrysgro.2014.01.069.

A. Assali, M. Bouslama, H. Abid, S. Zerroug, M. Ghaffour, F. Saidi, L. Bouzaiene, K. Boulenouar, Mater. Sci. Semicond. Process. 36 (2015) 192, https://doi.org/10.1016/j.mssp.2015.03.033.

I. Gorczyca, T. Suski, N. E. Christensen, A. Svane, J. Phys: Condens. Matter. 30 (2018) 063001, https://doi.org/10.1088/1361-648X/aaa2ae.

I. Gorczyca, T. Suski, G. Staszczak, N. E. Christensen, A. Svane, X. Wang, E. Dimakis, T. Moustakas, Jpn. J. Appl, Phys. 52 (2013) 08JL06. https://doi.org/10.7567/JJAP.52.08JL06.

D. Eric, J. Jiang, A. Imran, M. N. Zahid, A. A. Khan, Results Phys. 13 (2019) 102246. https://doi.org/10.1016/j.rinp.2019.102246.

Y. Li, B. Liu, R. Zhang, Z. Xie, Y. Zheng, Phys. E 44 (2012) 821. https://doi.org/10.1016/j.physe.2011.12.014.

K. Matsuoka, S. Yagi, H. Yaguchi, J. Cryst. Growth. 477 (2017) 201. https://doi.org/10.1016/j.jcrysgro.2017.05.021.

Z. Touaa and N. Sekkal, Acta Cryst. B 68 (2012) 378. https://doi.org/10.1107/S0108768112030091.

A. Bhuiyan, K. Sugita, A. Hashimoto, A. Yamamoto, IEEE J. Photovolt. 2 (3) (2012) 276. DOI: 10.1109/JPHOTOV.2012.2193384.

T. Suski, T. Schulz, M. Albrecht, X. Q. Wang, I. Gorczyca, K. Skrobas, N. E. Christensen, A. Svane, Appl. Phys. Lett. 104 (2014)182103. https://doi.org/10.1063/1.4875558.

A. Duff, L. Lymperakis, J. Neugebauer, Phys. Status Solidi. B 252 (2015) 855. https://doi.org/10.1002/pssb.201451687.

M. Oukli, N. Mehnane, H. Abid, Chin. J. Phys. 54 (2016) 60. https://doi.org/10.1016/j.cjph.2016.03.004.

Y. Cherchab, B. Amrani, N. Sekkal, M. Ghezali, K. Talbi, Phys. E 40 (2008) 606. https://doi.org/10.1016/j.physe.2007.08.122.

F. Tair, N. Sekkal, B. Amrani, W. Adli, L. Boudaoud, Superlattices Microstruct. 41 (2007) 44. https://doi.org/10.1016/j.spmi.2006.11.002.

F. Szmulowicz, H. J. Haugan, G. J. Brown, Quantum Sensing and Nanophotonic Devices V, Proc. of SPIE Vol. 6900 (2008) 69000L. https://doi.org/10.1117/12.763738.

K. C. Hall, K. Gündoğdu, E. Altunkaya, W. H. Lau, Michael E. Flatté, Thomas F. Boggess, J. J. Zinck, W. B, Phys. Rev. B 68 (2003) 115311. https://doi.org/10.1103/PhysRevB.68.115311.

H. Fritzsche, M. Saoudi, Z. Yamani, W. J. L. Buyers, R. A. Cowley, R. C. C. Ward, Phys. Rev. B 77 (2008) 054423. https://doi.org/10.1103/PhysRevB.77.054423.

M. Sawicki, G. J. Bowden, P. A. J. de Groot, B. D. Rainford, J. M. L. Beaujour, Appl. Phys. Lett. 77 (2000) 573. https://doi.org/10.1063/1.127048.

G. P. Dimitrakopulos, I. G. Vasileiadis, C. Bazioti, J. Smalc-Koziorowska, S. Kret, E. Dimakis, N. Florini, Th. Kehagias, T. Suski, Th. Karakostas, T. D. Moustakas, Ph. Komninou, J. Appl. Phys. 123 (2018) 024304. https://doi.org/10.1063/1.5009060.

F. Szmulowicz, H. J. Haugan, G. J. Brown, J. Appl. Phys. 104 (2008) 074505. https://doi.org/10.1063/1.2990003.

G.F. Karavaev, V.N. Chernyshov, R.M. Egunov. Semiconductors. 37 (2003) 573. https://doi.org/10.1134/1.1575364.

H. Xia, Y. Feng, R. Patterson, X. Jia, S. Shrestha, G. Conibeer, J. Appl. Phys. 113 (2013) 164304. https://doi.org/10.1063/1.4802683.

Alistair T. Meney, Superlattices and Microstructures. 77 (1992) 31. https://doi.org/10.1016/0749-6036(92)90358-C.

I. Gorczyca, K. Skrobas, T. Suski, N. E. Christensen, A. Svane, J. Appl. Phys. 114 (2013) 223102. https://doi.org/10.1063/1.4843015.

G. Staszczak, I. Gorczyca, T. Suski, X. Q. Wang, N. E. Christensen, A. Svane, E. Dimakis, T. D. Moustakas, J. Appl. Phys. 113 (2013) 123101. https://doi.org/10.1063/1.4796101.

S.Y.Savrasov, Phys. Rev. B 54 ( 1996) 16470. https://doi.org/10.1103/PhysRevB.54.16470.

J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865.

M. Merabet, S. Benalia, L. Djoudi, O. Cheref, N. Bettahar, D. Rached, R. Belacel, Chin. J. Phys 60 (2019) 462. https://doi.org/10.1016/j.cjph.2019.05.026.

Perdew J P and Wang Y, Phys. Rev. B 45 (1992) 13244. https://doi.org/10.1103/PhysRevB.45.13244.

F.D.Murnaghan, Proc. Natl. Acad. Sci. USA. 30 (1944) 5390. doi: 10.1073/pnas.30.9.244.

I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94 (2003) 3675. https://doi.org/10.1063/1.1600519.

Bo-Ting Liou, Jpn. J. Appl. Phys. 47 (2008) 3350. https://doi.org/10.1143/JJAP.47.3350.

B. Amina, A. Lachebi, A. Shuhaimi, S. A. Rahman, H. Abid, Optik. 127 (2016) 11577. https://doi.org/10.1016/j.ijleo.2016.09.014.

M. I. Ziane , Z. Bensaad , T. Ouahrani , H. Bennacer, Mater. Sci. Semicond. Process.30 (2015) 181. https://doi.org/10.1016/j.mssp.2014.08.039.

S.-g. Zhu, J.-j. Shi, S. Zhang, M. Yang, Z.-q. Bao, M. Zhang, Appl. Phys. B 104 (2011) 105. https://doi.org/10.1007/s00340-011-4473-8.

M.E. Sherwin, T.J. Drumond, J. Appl. Phys. 69 (1991) 8423. https://doi.org/10.1063/1.347412.

Z. Boussahla, B. Abbar, B. Bouhafs, A. Tadjer, J. Solid State Chem. 178 (2005) 2117. https://doi.org/10.1016/j.jssc.2005.03.047.

P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, M. Scheffler, Phys. Rev. B. 77 (2008) 075202. https://doi.org/10.1103/PhysRevB.77.075202.

M. J. Espitia R, O. S. Parra, C. O. López, J. Magn. Magn. Mater. 451 (2018) 295. https://doi.org/10.1016/j.jmmm.2017.11.070.

H. Achour, S. Louhibi-Fasla, F. Mana, Phys. Procedia. 55 ( 2014 ) 17. https://doi.org/10.1016/j.phpro.2014.07.003.

S. P. Tamariz-Kaufmann, A. A. Valladares, A. Valladares, R.M. Valladares, J. Non-Cryst. Solids. 420 (2015) 7. https://doi.org/10.1016/j.jnoncrysol.2015.03.037.

J. Serrano, A. Rubio, E. Hern_andez, A. Mu~noz, A. Mujica, Phys. Rev. B 62 (2000) 16612. https://doi.org/10.1103/PhysRevB.62.16612.

M. I. Ziane, Z. Bensaad, T. Ouahrani, B. Labdelli, H. Abid, Mater. Sci. Semicond. Process. 16 (2013) 1138. https://doi.org/10.1016/j.mssp.2013.02.016.

H. Baaziz, Z. Charifi, A.H. Reshak, B. Hamad, Y. Al-Douri, Appl. Phys. A 106 (2012) 687. https://doi.org/10.1007/s00339-011-6666-8.

S. Saib, N. Bouarissa, Phys. B 387 (2007) 377. https://doi.org/10.1016/j.physb.2006.04.023.

K. Talbi, Y. Cherchab, N. Sekkal, Eur. Phys. J. Appl. Phys. 58 (2012) 30103. https://doi.org/10.1051/epjap/2012110307.

R. Ahmed, H. Akbarzadeh, F. e-Aleem, Phys. B 370 (2005) 52. https://doi.org/10.1016/j.physb.2005.08.044.

L.K. Teles, L.M.R. Scolfaro, Appl. Phys. Lett. 80 (2002) 1177. https://doi.org/10.1063/1.1450261.

D. J. Wolford, T. F. Keuch, and J. A. Bradley, Phys. Rev. B 35 (1987) 1196. https://doi.org/10.1103/PhysRevB.35.1196.

S. Froyen, D. M. Wood, A. Zunger, Appl. Phys. Lett. 54 (1989) 2435. https://doi.org/10.1063/1.101100.

S. Gopalan, N. E. Christensen, M. Cardona, Phys. Rev. B 39 (1989) 5165. https://doi.org/10.1103/PhysRevB.39.5165.

R. A. Arif, H. Zhao, N. Tansu, Appl. Phys. Lett. 92, (2008) 011104, https://doi.org/10.1063/1.2829600.

S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors, Edit, John Wiley & Sons, Ltd., (2009), DOI:10.1002/9780470744383.

D. Allali, A. Bouhemadou, E. Muhammad Abud AlSafi, S. Bin-Omran, M. Chegaar, R. Khenata, A. H. Reshak, Phys. B 443 (2014) 24, https://doi.org/10.1016/j.physb.2014.02.053.

P. Y. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 4th edn. (Springer, Berlin, 2010), https://doi.org/10.1007/978-3-642-00710-1.

V. Antonov, B. Harmon, A. Yaresko, Electronic Structure and Magneto-Optical Properties of Solids, 1st edn. (Kluwer Academic Publishers, New York, 2004), https://doi.org/10.1007/1-4020-1906-8.

M. Merabet, D. Rached, R. Khenata, S. Benalia, B. Abidri, N. Bettahar, S. Bin Omran, Physica B 406 (2011) 3247, https://doi.org/10.1016/j.physb.2011.05.034.

D.R. Penn, Phys. Rev 128 (1962) 2093, https://doi.org/10.1103/PhysRev.128.2093.




DOI: https://doi.org/10.31349/RevMexFis.67.7

Refbacks

  • There are currently no refbacks.


Revista Mexicana de Física

ISSN: 2683-2224 (on line), 0035-001X (print)

Bimonthly publication of Sociedad Mexicana de Física, A.C.
Departamento de Física, 2o. Piso, Facultad de Ciencias, UNAM.
Circuito Exterior s/n, Ciudad Universitaria. C. P. 04510 Ciudad de México.
Apartado Postal 70-348, Coyoacán, 04511 Ciudad de México.
Tel/Fax: (52) 55-5622-4946, (52) 55-5622-4840. rmf@ciencias.unam.mx