Stark-shift-chirped rapid-adiabatic-passage technique in tripod systems

N. Shirkhaghah, M. Saadati-Niari, B. Nedaee-Shakarab

Abstract


We show that the technique of Stark-chirped rapid adiabatic passage (SCRAP), can be implemented in tripod quantum systems. We propose a scheme for coherent superposition among two ground states via Stark-shiftchirped rapid adiabatic passage technique in a tripod system. Tripod-SCRAP uses four laser pulses: an intense far-off-resonance Stark laser pulse modifies the transition frequency between the states by Stark shifting their energies and three nearly resonant pump, Stokes, and control laser pulses that fractionally transfer the population between the ground states via adiabatic passage. In our scheme, the pulse duration of the pump pulse must be larger than the pulse duration of the Stokes and control pulses, although with a smaller amplitude, and the atom encounters with the pump, Stokes, control, and Stark laser pulses with counterintuitive order (Stokes pulse arrives before the rest of the pulses). This technique can be applied to one-photon as well as multiphoton transitions and it is not necessary to vanish the pulses (pump and Stokes) simultaneously and it is a powerful alternative tool for f-STIRAP and tripod-STIRAP techniques at least when inhomogeneous broadenings are included. inhomogeneous broadening. This technique is robust against moderate variations in the intensities of the laser pulses,in detunings, and in delays between the pulses.


Full Text:

PDF

References


L.P. Yatsenko, B.W. Shore, T. Halfmann, K. Bergmann, and A. Vardi, Source of metastable H(2s) atoms using the Stark chirped rapid-adiabatic-passage technique. Phys. Rev. A 60 (1999) R4237. https://doi.org/10.1103/PhysRevA.60.R4237

T. Rickes, L.P. Yatsenko, S. Steuerwald, T. Halfmann, B.W. Shore, N.V. Vitanov, and K. Bergmann, Efficient adiabatic population transfer by two-photon excitation assisted by a laserinduced Stark shif. J. Chem. Phys. 113 (2000) 534. https://doi.org/10.1063/1.481829

T. Rickes, J.P. Marangos, and T. Halfmann, Enhancement of third-harmonic generation by Stark-chirped rapid adiabatic passage. Opt. Commun. 227 (2003) 133. https://doi.org/10.1016/j.optcom.2003.09.036

X. Shi, H. Yuan, and H.Q. Zhao, Microscopic description of spontaneous emission in Stark chirped rapid adiabatic passages. Int. J. Theor. Phys. 57 (2017) 9. https://doi.org/10.1007/s10773-017-3535-z

L.P. Yatsenko, N.V. Vitanov, B.W. Shore, T. Rickes, and K. Bergmann, Creation of coherent superpositions using Starkchirped rapid adiabatic passage. Opt. Commun. 204 (2002) 413. https://doi.org/10.1016/S0030-4018(02)01303-2

M. Amniat-Talab, R. Khoda-Bakhsh, and S. Guérin, Quantum state engineering in a cavity by Stark chirped rapid adiabatic passage. Phys. Lett. A 359 (2006) 366. https://doi.org/10.1016/j.physleta.2006.06.056

L.F. Wei, J.R. Heinz, L.X. Johansson, Cen, S. Ashhab, and F. Nori, Controllable coherent population transfer in superconducting qubits for quantum computing. Phys. Rev. Lett. 100 (2008) 113601. https://doi.org/10.1103/PhysRevLett.100.113601

W. Nie, J.S. Huang, X. Shi, and L.F. Wei, Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages. Phys. Rev. A 82 (2010) 032319. https://doi.org/10.1103/PhysRevA.82.032319

A.A. Rangelov, N.V. Vitanov, L.P. Yatsenko, B.W. Shore, T. Halfmann, and K. Bergmann, Stark-shift-chirped rapidadiabatic-passage technique among three states. Phys. Rev. A 72 (2005) 053403. https://doi.org/10.1103/PhysRevA.72.053403

N. Shirkhanghah, M. Saadati-Niari, and S. Ahadpour, Fractional population transfer among three-level systems in a cavity by Stark-shift-chirped rapid adiabatic passage. Quantum Inf. Process. 19 (2020) 128. https://doi.org/10.1007/s11128-020-2604-z

U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann, Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results. J. Chem. Phys. 92 (1990) 5363.

K. Bergmann, H.Theuer, and B.W. Shore, Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70 (1998) 1003. https://doi.org/10.1063/1.458514

N.V. Vitanov, M. Fleischhauer, B.W. Shore, and K. Bergmann, Coherent manipulation of atoms and molecules by sequential laser pulses. Adv. At. Mol. Opt. Phys. 46 (2001) 55. https://doi.org/10.1016/S1049-250X(01)80063-X

N.V. Vitanov, T. Halfmann, B.W. Shore, and K. Bergmann, Laser-induced population transfer by adiabatic passage techniques. Ann. Rev. Phys. Chem. 52 (2001) 763. https://doi.org/10.1146/annurev.physchem.52.1.763

K. Bergmann, N.V. Vitanov, and B.W. Shore, Perspective: Stimulated Raman adiabatic passage: The status after 25 years. J. Chem. Phys. 142 (2015) 170901. https://doi.org/10.1063/1.4916903

N.V. Vitanov, A.A. Rangelov, B.W. Shore, and K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89 (2017) 015006. https://doi.org/10.1103/RevModPhys.89.015006

A.A. Rangelov, N.V. Vitanov, and B.W. Shore, Stimulated Raman adiabatic passage analogues in classical physics. J. Phys. B 42 (2009) 55504. https://doi.org/10.1088/0953-4075/42/5/055504

J.H. Schonfeldt, J. Twamley, and S. Rebi ¨ c, Optimized control of Stark-shift-chirped rapid adiabatic passage in a Λ-type three-level system. Phys. Rev. A 80 (2009) 043401. https://doi.org/10.1103/PhysRevA.80.043401

R. G. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann, Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states. Opt. Commun. 155 (1998) 144. https://doi.org/10.1016/S0030-4018(98)00358-7

R.G.M. Unanyan, B.W. Shore, and K. Bergmann, Laser-driven population transfer in four-level atoms: Consequences of nonAbelian geometrical adiabatic phase factors. Phys. Rev. A 59 (1999) 2910. https://doi.org/10.1103/PhysRevA.59.2910

H. Theuer, R.G. Unanyan, C.Habscheid, K. Klein, and K. Bergmann, Novel laser controlled variable matter wave beamsplitter. Opt. Express 4 (1999) 77. https://doi.org/10.1364/OE.4.000077

F. Vewinger, M. Heinz, R. Garcia-Fernandez, N.V. Vitanov, and K. Bergmann, Creation and Measurement of a Coherent Superposition of Quantum States. Phys. Rev. Lett. 91 (2003) 213001. https://doi.org/10.1103/PhysRevLett.91.213001

G.W. Coulston, and K. Bergmann, Population transfer by stimulated Raman scattering with delayed pulses: Analytical results for multilevel systems. J. Chem. Phys. 96 (1992) 3467. https://doi.org/10.1063/1.461642

N. V. Vitanov, K.A. Suominen, and B.W. Shore, Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage. J. Phys. B 32 (1999) 4535. https://doi.org/10.1088/0953-4075/32/18/312

N. Shirkhanghah, and M. Saadati-Niari, Nonlinear fractional stimulated Raman exact passage in three-level Λ systems. Rev. Mex. Fís. 66 (2020) 344. https://doi.org/10.31349/RevMexFis.66.344

B.W. Shore, The Theory of Coherent Atomic Excitation. Wiley, New York (1990).

S. Mirza-Zadeh, M. Saadati-Niari, and M. Amniat-Talab, Coherent superposition of states in N-pod systems by hyperbolictangent coincident pulses. Laser Phys. Lett. 15 (2018) 095105. https://doi.org/10.1088/1612-202X/aacfaa

J.R. Morris, and B.W. Shore, Reduction of degenerate two-level excitation to independent two-state systems. Phys. Rev. A. 27 (1983) 906. https://doi.org/10.1103/PhysRevA.27.906

A.A. Rangelov, N.V. Vitanov, and B.W. Shore, Extension of the Morris-Shore transformation to multilevel ladders. Phys. Rev. A. 74 (2006) 053402 (1-9) . https://doi.org/10.1103/PhysRevA.74.053402

B.W. Shore, Two-state behavior in N-state quantum systems: The Morris-Shore transformation reviewed. J. Mod. Opt. 61 (2014) 787. https://doi.org/10.1080/09500340.2013.837205




DOI: https://doi.org/10.31349/RevMexFis.67.180

Refbacks

  • There are currently no refbacks.


REVISTA MEXICANA DE FÍSICA, year 67, issue 2, March-April 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946, https://rmf.smf.mx/ojs/rmf, e-mail: rmf@ciencias.unam.mx. Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, March 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License