Quantum mechanics of particles trapped in a Lamé circle or Lamé sphere shaped potential well

T. Isojärvi


Ground state and 1st excited state energies and wave functions were calculated for systems of one or two electrons in a 2D and 3D potential well having a shape intermediate between a circle and a square or a sphere and a cube. One way to define such a potential well is with a step potential and a bounding surface of form |x| q +|y| q +|z| q = |r| q , which converts from a sphere to a cube when q increases from 2 to infinity. This kind of geometrical object is called a Lame surface. The calculations were done either with implicit finite difference time stepping in ´ the direction of negative imaginary time axis or with quantum diffusion Monte Carlo. The results demonstrate how the volume and depth of the potential well affect the E0 more than the shape parameter q does. Functions of two and three parameters were found to be sufficient for fitting an empirical graph to the ground state energy data points as a function of well depth V0 or exponent q. The ground state and first excited state energy of one particle in a potential well of this type appeared to be very closely approximated with an exponential function depending on q, when the well depth and area or volume was kept constant while changing the value of q. The model is potentially useful for describing quantum dots that deviate from simple geometric shapes, or for demonstrating methods of computational quantum mechanics to undergraduate students.


Potential well; Lamé curve, superquadric, imaginary time, quantum dot, color center

Full Text:



P. Tiwald et al., Ab initio perspective on the Mollwo-Ivey relation for F centers in alkali halides, Phys. Rev. B 92 (2015) 144107, https://doi.org/10.1103/PhysRevB.92.144107.

A. Popov, E. Kotomin and J. Maier, Basic properties of the F-type centers in halides, oxides and perovskites, Nucl. Instrum. Methods Phys. Res. B 268 (2010) 3084, https://doi.org/10.1016/j.nimb.2010.05.053.

R. Li, Z. Liu, Y. Wu and C. S. Liu, The impacts of the quantum-dot confining potential on the spin-orbit effect, Sci. Rep. {bf 8} (2018) 7400, https://doi.org/10.1038/s41598-018-25692-2.

K. L. Jahan, B. Boyacioglu and A. Chatterjee, Effect of confinement potential shape on the electronic, thermodynamic, magnetic and transport properties of a GaAs quantum dot at finite temperature, Sci. Rep. 9 (2019) 15824, https://doi.org/10.1038/s41598-019-52190-w.

J. Autschbach, Why the Particle-in-a-Box Model Works Well for Cyanine Dyes but Not for Conjugated Polyenes, J. Chem. Educ. 84 (2007) 1840, https://doi.org/10.1021/ed084p1840.

M. Mauksch and S. B. Tsogoeva, Spin-paired solvated electron couples in alkali-ammonia systems, Phys. Chem. Chem. Phys. 20 (2018) 27740, https://doi.org/10.1039/C8CP05058A.

H. J. Maris,Electrons in liquid helium, J. Phys. Soc. Jpn. 77 (2008) 111008, https://doi.org/10.1143/JPSJ.77.111008.

Y. Xing and H. J. Maris,Electrons and Exotic Ions in Superfluid Helium-4, J. Low Temp. Phys. 201 (2020) 634, https://doi.org/10.1007/s10909-020-02422-5.

A. Slavik and D. Ŝulc, Maximal volumes of n-dimensional balls in the p-norm, Arch. Math. 114 (2020) 305, https://doi.org/10.1007/s00013-019-01394-7.

N. Bera, J.K. Bhattacharjee, S. Mitra, and S. P. Khastgir, Energy levels of a particle confined in a super-circular box, Eur. Phys. J. D 46 (2008) 41, https://doi.org/10.1140/epjd/e2007-00282-6.

J. Gielis, The Geometrical Beauty of Plants (Atlantic press, 2017) pp. 53-55.

S. Onaka, Simple equations giving shapes of various convex polyhedra: the regular polyhedra and polyhedra composed of crystallographically low-index planes, Philos. Mag. Lett. 86 (2009) 175, https://doi.org/10.1080/09500830600603050.

A. P. Zhou and W. D. Sheng, Electron and hole effective masses in self-assembled quantum dots, Eur. Phys. J. B 68 (2009) 233, https://doi.org/10.1140/epjb/e2009-00098-2.

N. Vukmirovic, L-W. Wang, Quantum Dots: Theory, Comprehensive Nanoscience and Technology 1 (2011) 189, https://doi.org/10.1016/B978-0-12-374396-1.00027-1.

P. S. Drouvelis, P. Schmelcher and F. K. Diakonos, Probing the shape of quantum dots with magnetic fields, Phys. Rev. B 69 (2004) 155312, https://doi.org/10.1103/PhysRevB.69.155312.

I. Kosztin, B. Faber and K. Schulten,

Introduction to the Diffusion Monte Carlo Method,

Am. J. Phys. 64 (1996) 633, https://doi.org/10.1119/1.18168.

B. H. Bransden and C. J. Joachain,

Quantum Mechanics 2nd Ed. (Pearson Education Limited, 2000).

O. Bolina, Trotter formula and thermodynamic limits, 2002, arxiv.org/abs/physics/0202003.

W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing 3rd Ed. (Cambridge University Press, 2007).

Z. Sun, W. Yang and D. H. Zhang, Higher-order split operator schemes for solving the Schrödinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations, Phys. Chem. Chem. Phys. 14 (2012) 1827, https://doi.org/10.1039/C1CP22790D.

K. D. Sen, Electronic Structure of Quantum Confined Atoms and Molecules, (Springer International Publishing Switzerland, 2014), pp. 59-89.

N. Aquino and E. Castaño, The confined two-dimensional hydrogen atom in the linear variational approach, Revista Mexicana de Física E 51 (2005) 126.

P. Hautojärvi, M. T. Loponen, and K. Rytsölä, Positronium bubble in liquid helium, J. Phys. B: Atom. Molec. Phys. 9 (1976) 411, https://doi.org/10.1088/0022-3700/9/3/010.

DOI: https://doi.org/10.31349/RevMexFis.67.206


  • There are currently no refbacks.

REVISTA MEXICANA DE FÍSICA, year 67, issue 2, March-April 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946, https://rmf.smf.mx/ojs/rmf, e-mail: rmf@ciencias.unam.mx. Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, March 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License