Synthesis of silicon quantum dots using chitosan as a novel reductor agent

P. A. Hernández-Abril, J. L. Iriqui-Razcón, E. León-Sarabia, S. D. Leal-Soto, M. E. Álvarez-Ramos, D. Berman-Mendoza, H. J. Higuera-Valenzuela

Abstract


In the present paper we report a novel synthesis method of silicon quantum dots (SiQDs) using 3-Aminopropyltriethoxysilane (APTES) as silicon precursor and low molecular weight chitosan (CS) as reducing agent. The obtained SiQDs have a hydrodynamic diameter of 2.3 nm, water dispersible, presents blue emission band at 434.5 nm (2.85 eV) with a Commission Internationale de l’Eclairage 1931 (CIE1931) chromaticity coordinates (x = 0.1665, y = 0.1222), the experimental absorbance of the SiQDS was measured and the band gap (Eg) was estimated through PerkinElmer’s method, the obtained value was 3.1 eV and a positive ζ-potential of + 35 mV, resulting in photonics, microelectronics, and biotechnological potential applications.


Keywords


Silicon quantum dots, chitosan, eco-friendly synthesis.

Full Text:

PDF

References


Z. Kang et al., ”Water-soluble silicon quantum dots with wavelength-tunable photoluminescence,” Adv. Mater., 21, (2009), 661-664, doi: 10.1002/adma.200801642.

S. Bhattacharjee et al., ”Cytotoxicity of surface?functionalized silicon and germanium nanoparticles: The dominant role of surface charges,” Nanoscale, 5, (2013), 4870-4883, doi: 10.1039/c3nr34266b.

S. D. Ma, Y. L. Chen, J. Feng, J. J. Liu, X. W. Zuo, and X. G. Chen, ”One-Step Synthesis of Water-Dispersible and Biocompatible Silicon Nanoparticles for Selective Heparin Sensing and Cell Imaging,” Anal. Chem., 88, (2016), 10474-10481, doi: 10.1021/acs.analchem.6b02448.

L. T. Canham, ”Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett., 57, (1990), 1046-1048, doi: 10.1063/1.103561.

H. J. Higuera-Valenzuela et al., ”Efficiency enhancement of silicon solar cells by silicon quantum dots embedded in ZnO films as down-shifting coating,” J. Mater. Sci. Mater. Electron., (2020), doi: 10.1007/s10854-020-04576-0.

S. Morozova, M. Alikina, A. Vinogradov, and M. Pagliaro, ”Silicon Quantum Dots: Synthesis, Encapsulation, and Ap?plication in Light-Emitting Diodes,” Front. Chem., vol. 8, no. April, pp. 1-8, 2020, doi: 10.3389/fchem.2020.00191.

Z. Bisadi et al., ”Silicon nanocrystals for nonlinear optics and secure communications,” Phys. Status Solidi Appl. Mater. Sci., vol. 212, no. 12, pp. 2659-2671, 2015, doi:10.1002/pssa.201532528.

J. Wang, D. X. Ye, G. H. Liang, J. Chang, J. L. Kong, and J. Y. Chen, ”One-step synthesis of water-dispersible silicon nanoparticles and their use in fluorescence lifetime imaging of living cells,” J. Mater. Chem. B, vol. 2, no. 27, pp. 4338-4345,

, doi: 10.1039/c4tb00366g.

Y. Zhong et al., ”Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc., 135, (2013), 8350-8356, doi: 10.1021/ja4026227.

E. Roduner, ”Size matters: Why nanomaterials are different,” Chem. Soc. Rev., 35, (2006), 583-592, doi: 10.1039/b502142c.

S. Furukawa and T. Miyasato, ”Quantum size effects on the optical band gap of microcrystalline Si:H,” Phys. Rev. B, 38, (1988), 5726-5729, doi: 10.1103/PhysRevB.38.5726.

K. Hata et al., ”Self-assembled monolayer as a template to deposit silicon nanoparticles fabricated by laser ablation,” J. Phys. Chem. B, 105, (2001), 10842-10846, doi:10.1021/jp010760b.

Canham LT. 1990. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett, 57:1046-8.

Kovalev D, Heckler H, Ben-Chorin M, et al. 1998. Breakdown of the kconservation rule in Si nanocrystals. Phys Rev Lett, 81:2803-6.

Schoenfeld O, Zhao X, Christen J, et al. 1996. Formation of Si quantum dots in nanocrystalline silicon. Solid-State Electronics, 40:605-8.

R. D. Tilley, J. H. Warner, K. Yamamoto, I. Matsui, and H. Fujimori, ”Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals,” Chem. Commun., (2005), 1833-1835, doi: 10.1039/b416069j.

Y. Zhong et al., ”Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc., 135, (2013), 8350-8356, doi: 10.1021/ja4026227.

Wilcoxon JP, Samara GA, Provencio PN. 1999. Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys Rev B, 60:2704-14.

Bley RA, Kauzlarich SM, 1996. A low-temperature solution phase route for the synthesis of silicon nanoclusters. J Am Chem Soc, 118:12461-2.

B. Ghosh and N. Shirahata, ”Colloidal silicon quantum dots: Synthesis and luminescence tuning from the near-UV to the near-IR range,” Sci. Technol. Adv. Mater., 15, (2014), doi: 10.1088/1468-6996/15/1/014207.

P. Raveendran, J. Fu, and S. L. Wallen, ”Completely ’Green’ Synthesis and Stabilization of Metal Nanoparti?cles,” J. Am. Chem. Soc., 125, (2003), 13940-13941, doi: 10.1021/ja029267j.

C. Wang, X. Gao, Z. Chen, Y. Chen, and H. Chen, ”Preparation, characterization and application of polysaccharide-based metallic nanoparticles: A review,” Polymers (Basel)., 9, (2017), doi: 10.3390/polym9120689.

Y. Park, Y. N. Hong, A. Weyers, Y. S. Kim, and R. J. Linhardt, ”Polysaccharides and CIE1931phytochemicals: A natural reservoir for the green synthesis of gold and silver nanoparticles,” IET Nanobiotechnology, 5, (2011), 69-78, doi: 10.1049/iet-nbt.2010.0033.

X. Li et al., ”Liquid Metal Droplets Wrapped with Polysaccharide Microgel as Biocompatible Aqueous Ink for Flexible Conductive Devices,” Adv. Funct. Mater., 28, (2018), 1-8, doi: 10.1002/adfm.201804197.

Z. Wei et al., ”Novel biocompatible polysaccharide based self-healing hydrogel,” Adv. Funct. Mater., 25, (2015), 1352-1359, doi: 10.1002/adfm.201401502.

I. C. Dea, ”Industrial Polysaccharides,” Pure Appl. Chem., 61, (1989), 1315-1322, doi: 10.1351/pac198961071315.

S. Mizrahy and D. Peer, ”Polysaccharides as building blocks for nanotherapeutics,” Chem. Soc. Rev., 41, (2012), 2623-2640, doi: 10.1039/c1cs15239d.

C. GA©rente, P. Couespel Du Mesnil, Y. Andr ˜ A¨s, J. ˜ F. Thibault, and P. Le Cloirec, ”Removal of metal ions from aqueous solution on low cost natural polysaccharides. Sorption mechanism approach,” React. Funct. Polym., 46, (2000),

-144, doi: 10.1016/S1381-5148(00)00047-X.

J. Wang et al., ”Processable and Luminescent Supramolec?ular Hydrogels from Complex Coacervation of Polycations with Lanthanide Coordination Polyanions,” Macromolecules, (2019), doi: 10.1021/acs.macromol.9b01568.

M. Abramson, O. Shoseyov, and Z. Shani, ”Plant cell wall reconstruction toward improved lignocellulosic production and processability,” Plant Sci., 178, (2010), 61-72, doi: 10.1016/j.plantsci.2009.11.003.

A. Travan et al., ”Non-cytotoxic silver nanoparticle?polysaccharide nanocomposites with antimicrobial activity,” Biomacromolecules, 10, (2009), 1429-1435, doi: 10.1021/bm900039x.

H. Huang and X. Yang, ”Synthesis of polysaccharide?stabilized gold and silver nanoparticles: A green method,” Carbohydr. Res., 339, (2004), 2627-2631, doi:

1016/j.carres.2004.08.005.

H. Honarkar and M. Barikani, ”Applications of biopoly?mers I: Chitosan,” Monatshefte fur Chemie, 140, (2009), 1403-1420, doi: 10.1007/s00706-009-0197-4.

D. A. Alarcon-Pay ´ an, R. D. Koyani, and R. Vazquez-Duhalt, ”Chitosan-based biocatalytic nanoparticles for pol?lutant removal from wastewater,” Enzyme Microb. Technol.,100, (2017), 71-78, doi: 10.1016/j.enzmictec.2017.02.008.

C. Bergonzi et al., ”Study of 3D-printed chitosan scaffold features after different post-printing gelation processes,” Sci.Rep., 9, (2019), 1-11, doi: 10.1038/s41598-018-36613-8.

Z. Amoozgar, J. Park, Q. Lin, and Y. Yeo, ”Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery,” Mol. Pharm., 9, (2012),1262-1270, doi: 10.1021/mp2005615.

L. Sun, J. Li, J. Cai, L. Zhong, G. Ren, and Q. Ma, ”One pot synthesis of gold nanoparticles using chitosan with varying degree of deacetylation and molecular weight,” Carbohydr. Polym., 178, (2017), 105-114, doi: 10.1016/j.carbpol.2017.09.032.

E. Susilowati, Maryani, and Ashadi, ”Sunlight-assisted synthesis of colloidal silver nanoparticles using chitosan as reducing agent,” IOP Conf. Ser. Mater. Sci. Eng., 349, (2018),doi: 10.1088/1757-899X/349/1/012019.

J. Wang, D.-X. Ye, G.-H. Liang, J. Chang, J.-L. Kong, and J.-Y. Chen, ”One-step synthesis of water-dispersible silicon nanoparticles and their use in fluorescence lifetime imaging of living cells,” J. Mater. Chem. B, 2, (2014), 4338-4345, doi:

1039/C4TB00366G.

J. Wu, J. Dai, Y. Shao, and Y. Sun, ”One-step syn?thesis of fluorescent silicon quantum dots (Si-QDs) and their application for cell imaging,” RSC Adv., 5, (2015), 83581-83587, doi: 10.1039/c5ra13119g.

S. Chinnathambi, S. Chen, S. Ganesan, and N. Hanagata, ”Silicon quantum dots for biological appli?cations,” Adv. Healthc. Mater., 3, (2014), 10-29, doi:

1002/adhm.201300157.

L. W. Zhang and N. A. Monteiro-Riviere, ”Mechanisms of quantum dot nanoparticle cellulCIE1931ar uptake,” Toxicol. Sci., 110, (2009), 138-155, doi: 10.1093/toxsci/kfp087.

S. Ohta, S. Inasawa, and Y. Yamaguchi, ”Real time observation and kinetic modeling of the cellular uptake and removal of silicon quantum dots,” Biomaterials, 33, (2012),4639-4645, doi: 10.1016/j.biomaterials.2012.03.029.

E. FrA¶hlich, ”The role of surface charge in cellular uptake and cytotoxicity of medical nanoparti?cles,” Int. J. Nanomedicine, 7, (2012), 5577-5591, doi: 10.2147/IJN.S36111.

Y. Zhong et al., ”Facile, Large-Quantity Synthesis of Stable, Tunable-Color Silicon Nanoparticles and Their Application for Long-Term Cellular Imaging,” ACS Nano, 9, (2015), 5958-5967, doi: 10.1021/acsnano.5b00683.

L. S. Liao, X. M. Bao, X. Q. Zheng, N. S. Li, and N. Ben Min, ”Blue luminescence from Si+-implanted SiO2 films thermally grown on crystalline silicon,” Appl. Phys. Lett., 850, (1995), 850, doi: 10.1063/1.116554.

X. Pan, W. Ren, L. Gu, G. Wang, and Y. Liu, ”Pho?toluminescence from chitosan for bio-imaging,” Aust. J. Chem., 67, (2014), 1422-1426, doi: 10.1071/CH14274.

H. Huang et al., ”Enhanced fluorescence of chitosan based on size change of micelles and application to directly selective detecting Fe3+ in human serum,” Biosens. Bioelectron.,42, (2013), 539-544, doi: 10.1016/j.bios.2012.10.098.

R. Duan et al., ”Chitosan-coated gold nanorods for cancer therapy combining chemical aCIE1931nd photothermal effects,” Macromol. Biosci., 14, (2014), 1160-1169, doi: 10.1002/mabi.201300563.

S. F. Shi et al., ”Biocompatibility of chitosan coated iron oxide nanoparticles with osteoblast cells,” Int. J. Nanomedicine, 7, (2012), 5593-5602, doi:

2147/IJN.S34348.

J. Dharma and A. Pisal, ”Simple Method of Measuring the Band Gap Energy Value of TiO2 in the Powder Form using a UV/Vis/NIR Spectrometer,” Shelton, CT USA.

A. N. Meza-Rocha, I. Camarillo, R. Lozada-Morales, and U. Caldino, ”Reddish-orange and neutral/warm white light emitting phosphors: Eu3+, Dy3+ and Dy3+/Eu3+ in potassium-zinc phosphate glasses,” J. Lumin., 183, (2017), 341-347, doi: 10.1016/j.jlumin.2016.11.068.

J. Selverian, ”Colorcalculator.” Osram Sylvania, 2020.

R. Lopez-Delgado et al., ”Solar cell efficiency improvement employing down-shifting silicon quantum dots,” Microsyst.Technol., 24, (2018), 495-502, doi: 10.1007/s00542-017-3405-x.

R. Duan et al., ”Chitosan-coated gold nanorods for cancer therapy combining chemical and photothermal effects,” Macromol. Biosci., 14, (2014), 1160-1169, doi:

1002/mabi.201300563.

J. Lin and Q. Wang, ”Role of novel silicon nanoparticles in luminescence detection of a family of antibiotics,” RSC Adv., 5, (2015), 27458-27463, doi: 10.1039/c5ra01769f.

Y. Zhong et al., ”Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes,” J. Am. Chem. Soc., 135, (2013), 8350-8356, doi: 10.1021/ja4026227.




DOI: https://doi.org/10.31349/RevMexFis.67.249

Refbacks

  • There are currently no refbacks.


REVISTA MEXICANA DE FÍSICA, year 67, issue 2, March-April 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946, https://rmf.smf.mx/ojs/rmf, e-mail: rmf@ciencias.unam.mx. Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, March 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License