The temporal fluctuation of the inverse participation ratio for localized field modes in three-dimensional percolation system

E. Martínez-Sánchez, A. Díaz-de-Anda, G. Burlak, R. Muñiz-Valdez

Abstract


We investigate the structure of the  optical field radiated by the disordered optical nano-emitters randomly incorporated  in three-dimensional cluster of a percolation material. Our numerical studies shown that the temporal variations of the inverse participation ratio (IPR) allow analyzing the extended and localized field structures over a long time range. The properties of IPR and the dynamics of the lasing emitters allow to find the characteristic time scales when the localization of the field in a general three-dimensional disordered system occurs. The studied effect opens new perspectives to control the optical fields localization in modern optical nano-technologies.

Keywords


Optics localization; spanning cluster; random pores; incorporated nanoemitters; FDTD

Full Text:

PDF

References


D.S. Wiersma, P. Bartolini, A. Lagendijk, et al. Localization of light in a disordered medium, Nature 390 (1997) 671, https://doi.org/10.1038/37757.

D. Vollhardt, Localization Effects in Disordered Systems. Festkiirperprobleme 27 (1987) 63.

D.S. Wiersma, Disordered photonics, Nat. Photonics 7 (2013) 188, https://doi.org/10.1038/nphoton.2013.29

D. Vollhardt, P. Wolfle, Scaling Equations from a Self-Consistent Theory of Anderson Localization, Phys. Rev. Lett. 48 (1982) 699, https://doi.org/10.1103/PhysRevLett.48.699

P. Sebbah, D. Sornette, C. Vanneste, Anomalous diffusion in two-dimensional Anderson-localization dynamics, Phys. Rev. B 48 (1993) 12506, https://doi.org/10.1103/PhysRevLett.48.699.

M.M. Sigalas, C.M. Soukoulis, C. T. Chan, et al. Localization of electromagnetic waves in two-dimensional disordered systems, Phys. Rev. B. 53 (1996) 8340, https://doi.org/10.1103/PhysRevB.53.8340.

T. Schwartz, G. Bartal, S. Fishman, et al. Transport and Anderson localization in disordered two-dimensional photonic lattices, Nature 446 (2007) 52, https://doi.org/10.1038/nature05623.

F. Riboli, P. Barthelemy, S. Vignolini, et al. Anderson localization of near-visible light in two dimensions, Opt. Lett. 36 (2011) 127 https://doi.org/10.1364/OL.36.000127.

G. Burlak, E. Martinez-Sanchez, The optical Anderson localization in three-dimensional percolation system, Opt. Commun. 387 (2017) 426, https://doi.org/10.1016/j.optcom.2016.10.068

P. Sebbah, C. Vanneste, Random laser in the localized regime, Phys. Rev. B, 66 (2002) 144202, https://doi.org/10.1103/PhysRevB.66.144202

H. Noh, J. Yang, S.F. Liew, et al. Control of lasing in biomimetic structures with short-range order, Phys. Rev. Lett. 106 (2011) 183901, https://doi.org/10.1103/PhysRevLett.106.183901

D. S. Wiersma, The physics and applications of random lasers, Nat. Phys. 4 (2008) 359, https://doi.org/10.1038/nphys971

G. Burlak, Y.G. Rubo, Mirrorless lasing fromlight emitters in percolating clusters, Phys. Rev. A 92 (2015) 013812, https://doi.org/10.1103/PhysRevA.92.013812

G. Burlak, The Dynamic Three-Dimensional Localization of Fields in Active Percolating Systems, Adv. in Math. Phys. 2019 (2019) 1, https://doi.org/10.1155/2019/5867012

F. Wenger, Inverse Participation Ratio in $2+ epsilon$ Dimensions, Zeitschrift fur Physik B Condens. Matter 36 (1980) 209, https://doi.org/10.1007/BF01325284

X. Jiang, C.M. Soukoulis, Phys. Rev. Lett. 85 (2000) 70, https://doi.org/10.1103/PhysRevLett.85.70

A.E. Siegman, Lasers, (University Science Books, Mill Valley California, 1986),pp. 27-39.

M.A. Noginov, J. Novak, D. Grigsby, et al. Opt. A: Pure Appl. Opt. 8 (2006) S285, https://doi.org/10.1088/1464-4258/8/4/S31

A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Publishers, Boston, London, 2005),pp. 51-327.

H. Cao, Y.G. Zhao, S.T. Ho, et al. Random Laser Action in Semiconductor Powder, Phys. Rev. Lett. 82 (1999) 2278, https://doi.org/10.1103/PhysRevLett.82.2278

J. Sanghera, W. Kim, G. Villalobos, et al. Ceramic Laser Materials, Materials 5 (2012) 258, https://doi.org/10.3390/ma5020258

H. Shinobu, Localization Length and Inverse Participation Ratio of Two Dimensional Electron in the Quantized Hall Effect, Prog. Theor. Phys. 76 (1986) 1210, https://doi.org/10.1143/PTP.76.1210

G. Burlak, Y. Calderon-Segura, Percolation and lasing in real 3D crystals with inhomogeneous distributed random pores, Phys. B. 453 (2014) 8, https://doi.org/10.1016/j.physb.2014.04.030




DOI: https://doi.org/10.31349/RevMexFis.67.285

Refbacks

  • There are currently no refbacks.


REVISTA MEXICANA DE FÍSICA, year 67, issue 2, March-April 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946, https://rmf.smf.mx/ojs/rmf, e-mail: rmf@ciencias.unam.mx. Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, March 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License