Ultrafast dynamics of carriers and phonons of photoinjected double-plasma in aluminium nitride

C. Gonçalves Rodrigues, R. Luzzi

Abstract


Aluminum nitride is attracting great interest of the industry and scientific community due to its interesting properties. In this paper is performed a theoretical study on the ultrafast transient transport properties of photoinjected carriers in wurtzite AlN subjected to electric fields up to 80 kV/cm. For this, the Nonequilibrium Statistical Operator Method was used. The evolution towards the steady state of drift velocity of carriers (electrons and holes) and nonequilibrium temperature (carriers and phonons) subpicosecond scale were determined.


Keywords


aluminium nitride; plasma semiconductor; photoinjected semiconductor

Full Text:

PDF

References


bibitem{1} Y.G. Cao, X. L. Chen, J.Y. Li, YP. Xu, T. Xu, Q. L.

Liu, and J.K. Liang, Blue emission and Raman scattering spectrum

from AlN nanocrystalline powders, emph{J. Cryst. Growth}

textbf{213} (2000) 198-202.

https://doi.org/10.1016/S0022-0248(00)00379-1

bibitem{2} S.C. Jain, M. Willander, J. Narayan, and R. Overstraeten, III–nitrides: Growth, characterization, and properties, emph{J. Appl. Phys.} textbf{87} (2000) 965.

https://doi.org/10.1063/1.371971

bibitem{3} M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur,

emph{Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe} (Wiley, New York, 2001).

bibitem{4} A.G. Bhuiyan, A. Hashimoto, and A. Yamamoto, Indium nitride (InN): A review on growth, characterization, and properties, emph{J. Appl. Phys.} textbf{94} (2003) 2779. https://doi.org/10.1063/1.1595135

bibitem{5} M.S. Shur and R.F. Davis, emph{GaN-Based Materials and Devices: Growth, Fabrication, Characterization and Performance} (World Scientific, River Edge, 2004).

bibitem{6} M. Iwata, K. Adachi, S. Furukawa, and T. Amakawa, Synthesis of purified AlN nano powder by transferred type arc plasma, emph{J. Phys. D Appl. Phys.} textbf{37} (2004) 1041.

https://doi.org/10.1088/0022-3727/37/7/014

bibitem{7} Y. Taniyasu, M. Kasu, and T. Makimoto, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,

emph{Nature} textbf{441} (2006) 325-328.

https://doi.org/10.1038/nature04760

bibitem{8} Y. Taniyasu and M. Kasu, Aluminum nitride deep-ultraviolet light-emitting p–n junction diodes, emph{Diam. Relat. Mater.} textbf{17} (2008) 1273-1277.

https://doi.org/10.1016/j.diamond.2008.02.042

bibitem{9} J. Wu, When group-III nitrides go infrared: New properties and perspectives, emph{J. Appl. Phys.} textbf{106} (2009) 011101. https://doi.org/10.1063/1.3155798

bibitem{10} S.J. Pearton, C.R. Abernathy, and F. Ren, emph{Gallium Nitride Processing for Electronics, Sensors and Spintronics} (Springer, New York, 2010).

bibitem{11} N.S. Kanhe, A.B. Nawale, R.L. Gawade, V.G. Puranik, S.V. Bhoraskar, A.K. Das, and V.L. Mathe, Understanding the growth of micro and nano-crystalline AlN by thermal plasma process, emph{J. Cryst. Growth} textbf{339} (2012) 36--45.

https://doi.org/10.1016/j.jcrysgro.2011.11.011

bibitem{12} R.R. Sumathi, Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds, emph{Cryst. Eng. Comm.} textbf{15} (2013) 2232-2240.

https://doi.org/10.1039/C2CE26599K

bibitem{13} E.A. Jones, F. Wang, and D. Costinett, Review of commercial GaN power devices and GaN-based converter design challenges, emph{IEEE J. Emerg. Sel. Topics Power Electron.} textbf{4} (2016) 707-719. https://doi.org/10.1109/JESTPE.2016.2582685

bibitem{14} G. Meneghesso, M. Meneghini, I. Rossetto, D. Bisi, S. Stoffels, M. Van Hove, S. Decoutere, and E. Zanoni, Reliability and parasitic issues in GaN-based power HEMTs: a review, emph{Semicond. Sci. Technol.} textbf{31} (2016) 093004.

https://doi.org/10.1088/0268-1242/31/9/093004

bibitem{15} H. Wu and R. Zheng, Single Crystal AlN: Growth by Modified Physical Vapor Transport and Properties, In: emph{III-Nitride Materials, Devices and Nano-Structures}, edited By: Zhe Chuan Feng (World Scientific Publishing, Singapore, 2017), pp. 151--182. https://doi.org/10.1142/9781786343192_0005

bibitem{16} J. Zagoraca, D. Zagoraca, D. Jovanovi'{c}, J. Lukovi'{c}, and B. Matovi'{c}, Ab initio investigations of structural, electronic and mechanical properties of aluminum nitride at standard and elevated pressures, emph{J. Phys. Chem. Solid.} textbf{122} (2018) 94-103. https://doi.org/10.1016/j.jpcs.2018.06.020

bibitem{17} D.M. Spiridonov, I.A. Weinstein, D.V. Chaikin, A.S. Vokhmintsev, Yu. D. Afonin, and A.V. Chukin, Spectrally resolved

thermoluminescence in electron irradiated AlN submicrocrystals,

emph{Radiation Measurements} textbf{122} (2019) 91--96.

https://doi.org/10.1016/j.radmeas.2019.02.001

bibitem{18} K. Teker, Dielectrophoretic Assembly of Aluminum Nitride (AlN) Single Nanowire Deep Ultraviolet Photodetector, emph{J. Nano Research} textbf{60} (2019) 86-93.

https://doi.org/10.4028/www.scientific.net/JNanoR.60.86

bibitem{19} H. Wei, P. Qiu, M. Peng, Q. Wu, S. Liu, Y. An, Y. He, Y. Song, and X. Zheng, Interface modification for high-efficient quantum dot sensitized solar cells using ultrathin aluminum nitride coating, emph{Appl. Surf. Sci.} textbf{476} (2019) 608--614.

https://doi.org/10.1016/j.apsusc.2019.01.144

bibitem{20} Z. Ren, Y. Lu, H.H. Yao, H. Sun, C.H. Liao, J. Dai, C. Chen, J.H. Ryou, J. Yan, J. Wang, J. Li, and X. Li, III-nitride Deep UV LED without Electron Blocking Layer, emph{IEEE Photonics Journal} textbf{11} (2019) 8200511.

https://doi.org/10.1109/JPHOT.2019.2902125

bibitem{21} N. Alfaraj, J.W. Min, C.H. Kang, A.A. Alatawi, D. Priante, R.C. Subedi, M. Tangi, T.K. Ng, and B.S. Ooi, Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group III–nitrides, III–oxides, and two-dimensional materials, emph{J. Semicond.} textbf{40} (2019) 121801. https://doi.org/10.1088/1674-4926/40/12/121801.

bibitem{22} R. Lin, W. Zheng, L. Chen, Y. Zhu, M. Xu, X. Ouyang, and F. Huang, X-ray radiation excited ultralong ($>$20,000 seconds) intrinsic phosphorescence in aluminum nitride single-crystal scintillators, emph{Nature Communications} textbf{11} (2020) 4351. https://doi.org/10.1038/s41467-020-18221-1

bibitem{23} B. Choudhuri and A. Mondal, Group III-Nitrides and Other Semiconductors for Terahertz Detector. In: emph{Emerging Trends in Terahertz Solid-State Physics and Devices}, edited by A. Biswas, A. Banerjee, A. Acharyya, H. Inokawa and J. Roy (Springer, Singapore, 2020). http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-981-15-3235-1_12

bibitem{24} D.Y. Xing and C.S. Ting, Green's-function approach to transient hot-electron transport in semiconductors under a uniform electric field, emph{Phys. Rev. B} textbf{35} (1987) 3971.

https://doi.org/10.1103/PhysRevB.35.3971

bibitem{25} N. Ma, X. Q. Wang, S.T. Liu, G. Chen, J.H. Pan, L. Feng, F.J. Xu, N. Tang, and B. Shen, Hole mobility in wurtzite InN, emph{Appl. Phys. Lett.} textbf{98} (2011) 192114.

https://doi.org/10.1063/1.3592257

bibitem{26} P. Siddiqua and S.K. O'Leary, Electron transport within the wurtzite and zinc-blende phases of gallium nitride and indium nitride, emph{J. Mater. Sci.: Mater. Electron.} textbf{29} (2018) 3511. https://doi.org/10.1007/s10854-017-8324-1

bibitem{27} L.F. Mao, Quantum coupling and electrothermal effects on electron transport in high-electron mobility transistors, emph{Pramana -- J. Phys.} textbf{93} (2019) 11.

https://doi.org/10.1007/s12043-019-1769-4

bibitem{28} T. Linn, K. Bittner, H.G. Brachtendorf, and C. Jungemann, Simulation of THz oscillations in semiconductor devices based on balance equations, emph{J. Sci. Comput.} textbf{85} (2020) 6. https://doi.org/10.1007/s10915-020-01311-z

bibitem{29} V. Stefano, An energy transport model describing electro-thermal transport in silicon carbide semiconductors, emph{J. Comput. Theor. Transport} textbf{46} (2017) 379--395.

https://doi.org/10.1080/23324309.2017.1352513

bibitem{30} S.M. Hong and J.H. Jang, Transient simulation of semiconductor devices using a deterministic Boltzmann equation solver, emph{IEEE J. Electron Devices Soc.} textbf{6} (2018) 156--163. https://doi.org/10.1109/JEDS.2017.2780837

bibitem{31} D.N. Zubarev, emph{Nonequilibrium Statistical

Thermodynamics} (Consultants Bureau, New York, 1974).

bibitem{32} D.N. Zubarev, V. Morozov, and G. R"{o}pke, emph{Statistical Mechanics of Nonequilibrium Processes}, Vols. 1 and 2 (Akademie Verlag Wiley VCH Publishing Group, Berlin, 1996 and 1997).

bibitem{33} R. Luzzi, A.R. Vasconcellos, and J.G. Ramos, emph{Predictive Statistical Mechanics: a Nonequilibrium Statististical Ensemble Formalism} (Kluwer Academics, Dordrecht, The Netherlands, 2002).

bibitem{34} R. Luzzi, A.R. Vasconcellos, and J.G. Ramos, emph{Statistical Foundations of Irreversible Thermodynamics} (Teubner-Bertelsmann Springer, Stuttgart, 2000).

bibitem{35} R. Luzzi, A.R. Vasconcellos, J.G. Ramos, and C.G.

Rodrigues, Statistical irreversible thermodynamics in the framework

of Zubarev's nonequilibrium statistical operator method,

emph{Theor. Math. Phys.} textbf{194} (2018) 4.

https://doi.org/10.1134/S0040577918010038

bibitem{36} C.G. Rodrigues, A.R. Vasconcellos, and R. Luzzi, Optical properties of III-nitrides in electric fields, emph{Eur. Phys. J. B.} textbf{72} (2009) 67. https://doi.org/10.1140/epjb/e2009-00332-y

bibitem{37} C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, and V.N.

Freire, Urbach's tail in III-nitrides under an electric field,

emph{J. Appl. Phys.} textbf{90} (2001) 1879.

https://doi.org/10.1063/1.1384859

bibitem{38} C.G. Rodrigues, A.R. Vasconcellos, and R. Luzzi, Non-Linear electron mobility in n-doped III-Nitrides, emph{Braz. J. Phys.} textbf{36} (2006) 255. http://www.sbfisica.org.br/bjp/files/v36_255.pdf

bibitem{39} C.G. Rodrigues, C.A.B. Silva, A.R. Vasconcellos, J.G,

Ramos, and R. Luzzi, The role of nonequilibrium thermo-mechanical statistics in modern technologies and industrial processes: an overview, emph{Braz. J. Phys.} textbf{40} (2010) 63. http://www.sbfisica.org.br/bjp/files/v40_63.pdf

bibitem{40} C.G. Rodrigues, A.R. Vasconcellos, and R. Luzzi, Nonlinear hole transport and nonequilibrium thermodynamics in group III-nitrides under the influence of electric fields, emph{J. Appl. Phys.}

textbf{102} (2007) 073714. https://doi.org/10.1063/1.2785976

bibitem{41} C.G. Rodrigues, Electron mobility in n-doped zinc sulphide, emph{Microelectron. J.} textbf{37} (2006) 657.

https://doi.org/10.1016/j.mejo.2005.05.015

bibitem{42} C.G. Rodrigues, V.N. Freire, A.R. Vasconcellos, and R. Luzzi, Electron mobility in nitride materials, emph{Braz. J. Phys.}

textbf{32} (2002) 439--441.

http://www.sbfisica.org.br/bjp/files/v32_439.pdf

bibitem{43} C.G. Rodrigues, A.R. Vasconcellos, and R. Luzzi, A kinetic theory for nonlinear quantum transport, emph{Transp. Theory Stat. Phys.} textbf{29} (2000) 733. http://dx.doi.org/10.1080/00411450008200000

bibitem{44} L. Lauck, A.R. Vasconcellos, and R. Luzzi, A nonlinear quantum transport theory, emph{Physica A} textbf{168} (1990) 789--819. https://doi.org/10.1016/0378-4371(90)90031-M

bibitem{45} C.G. Rodrigues, A.R. Vasconcellos, and R. Luzzi, Nonlinear transport in n-III-nitrides: Selective amplification and emission of coherent LO phonons, emph{Solid State Commun.} textbf{140} (2006) 135. https://doi.org/10.1016/j.ssc.2006.08.015

bibitem{46} C.G. Rodrigues, A.R. Vasconcellos, and R. Luzzi, Evolution kinetics of nonequilibrium longitudinal-optical phonons generated by drifting electrons in III-nitrides: longitudinal-optical-phonon resonance, emph{J. Appl. Phys.} textbf{108} (2010) 033716. https://doi.org/10.1063/1.3462501

bibitem{47} C.G. Rodrigues, A.R. Vasconcellos, and R. Luzzi, Drifting electron excitation of acoustic phonons: Cerenkov-like effect in n-GaN, emph{J. Appl. Phys.} textbf{113} (2013) 113701.

https://doi.org/10.1063/1.4795271

bibitem{48} C.G. Rodrigues, F.S. Vannucchi, and R. Luzzi, Non-equilibrium Bose-Einstein-like condensation, emph{Advanced Quantum Technologies} textbf{1} (2018) 201800023.

https://doi.org/10.1002/qute.201800023

bibitem{49} R.K. Chang, J.M. Ralston, and D.E. Keating, emph{Ligth Scattering Spectra of Solids I}, edited by G.B. Wright (Springer, New York, 1969), pp. 369--379.

bibitem{50} P. Siddiqua, W.A. Hadi, M.S. Shur, and S.K. O'Leary, A 2015 perspective on the nature of the steady-state and transient electron transport within the wurtzite phases of gallium nitride, aluminum nitride, indium nitride, and zinc oxide: a critical and

retrospective review, emph{J. Mater. Sci.: Mater. Electron}

textbf{26} (2015) 4475.

bibitem{51} S. Wang, Z. Wu, Z. Haifeng, X. Duan, C. Han, Y. Wei, and H. Liu, Comparison the electron momentum and energy relaxation process in wurtzite GaN, InN and AlN by Monte Carlo method, emph{Solid State Commun.} textbf{288} (2019) 68--73.

https://doi.org/10.1016/j.ssc.2018.11.018

bibitem{52} H. Wu and R. Zheng, Single Crystal AlN: Growth by Modified Physical Vapor Transport and Properties, In: emph{III-Nitride Materials, Devices and Nano-Structures}, edited By: Z. C. Feng (World Scientific Publishing, Singapore, 2017), pp. 151--182.

https://doi.org/10.1142/9781786343192_0005

bibitem{53} S.K. O'Leary, P. Siddiqua, W.A. Hadi, B.E. Foutz, M.S. Shur, and L.F. Eastman, Electron Transport Within III-V Nitride

Semiconductors, In: emph{Springer Handbook of Electronic and

Photonic Materials} (Part D: Materials for Optoelectronics and

Photonics), edited by S. Kasap and P. Capper (Springer International Publishing, Berlin, 2017).

https://doi.org/10.1007/978-3-319-48933-9_32

bibitem{54} S.K. O'Leary, B.E. Foutz, M.S. Shur, and L.F. Eastman, Steady-State and Transient Electron Transport Within the III-V Nitride Semiconductors, GaN, AlN, and InN: A Review, emph{J. Mater. Sci.: Mater. Electron.} textbf{17} (2006) 87--126.

https://doi.org/10.1007/s10854-006-5624-2

bibitem{55} S. Contreras, L. Konczewicz, J.B. Messaoud, H. Peyre, M.A. Khalfioui, S. Matta, M. Leroux, B. Damilano, and J. Brault, High temperature electrical transport study of Si-doped AlN,

emph{Superlattice. Microst.} textbf{98} (2016) 253--258.

https://doi.org/10.1016/j.spmi.2016.08.038

bibitem{56} C.G. Rodrigues, A.R. Vasconcellos, R. Luzzi, and V.N.

Freire, Transient transport in III-nitrides: interplay of momentum

and energy relaxation times, emph{J. Phys-Condens. Mat.}

textbf{19} (2007) 346214.

https://doi.org/10.1088/0953-8984/19/34/346214

bibitem{57} H. Arabshahi, M. Izadifard, and A. Karimi, Calculation of elecron mobility in WZ-AlN and ZB-AlN at low electric field,

emph{International Journal of Science, Environment and Technology} textbf{1} (2012) 395-401. https://doi.org/10.15580/GJSETR.2012.3.10031275




DOI: https://doi.org/10.31349/RevMexFis.67.318

Refbacks

  • There are currently no refbacks.


REVISTA MEXICANA DE FÍSICA, year 67, issue 2, March-April 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946, https://rmf.smf.mx/ojs/rmf, e-mail: rmf@ciencias.unam.mx. Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, March 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License