A new scheme of coupling and synchronizing low-dimensional dynamical systems

U. Uriostegui Legorreta, E. S. Tututi Hernández, G. Arroyo-Correa

Abstract


A different manner of study synchronization between chaotic systems is presented. This is done by using two different forced coupled nonlinear circuits. The way of coupling the systems under study is different from those used in the analysis of chaos in dynamical systems of low dimensionality. The study of synchronization and how to manipulate it, is carried out through the variation of the couplings by calculating the bifurcation diagrams. We observed that for rather larger values of the coupling between the circuits it is reached total synchronization, while for small values of the coupling it is obtained, in the best of the cases, partial synchronization.


Keywords


Nonlinear dynamics, control of chaos, electronic circuits: Oscillators.

Full Text:

PDF

References


L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64 1196 (1990).

H. Zhang, D. Liu and Z. Wang, Controlling Chaos, Springer, London 2009.

I. Pastor-Diaz and A. López-Fraguas, Dynamics of two coupled van der Pol oscillators, Phys. Rev. E52, 1480 (1995).

C. Reick and E. Mosekilde, Emergence of quasiperiodicity in symmetrically coupled, identical period-doubling systems, Phys. Rev. E52, 1418 (1995).

M. Z. Ding and W. H. Yang, and H. J. Zhang, Observation of intermingled basins in coupled oscillators exhibiting synchronized chaos, Phys. Rev. E54, 2489 (1995).

H-W. Yin and J-H. Dai, Phase effect of two coupled periodically driven Duffing oscillators, Phys. Rev. E58, 5683 (1998).

K-J. Lee, Y. Kwak and T-K. Lim, Phase jumps near a phase synchronization transition in systems of two coupled chaotic oscillators, Phys. Rev. Lett. 81,321 (1998).

M. G. Rosenblum, A. Pikovsky and J. Kurths, From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev.Lett. 78, 4193 (1997).

Y.J. Han, Dynamics of coupled nonlinear oscillators of different attractors: van der Pol oscillator and damped Duffing oscillator, J. Korean Phys. Soc. 37, 3 (2000).

J.C.Chedjou, K. Kyamakya, I. Moussa, H.P. Kuchenbecker, W. Mathis, Behavior of a self sustained electromechanical transducer and routes to chaos, J. Vib. Acoust. 128, 282293 (2006).

J.C. Chedjou, H.B. Fotsin, P. Woafo, and S. Domngang, Analog simulation of the dynamics of a van der Pol oscillator coupled to a Duffing oscillator, IEEE Trans. Circuits Syst.I, Fundam. Theory Appl. 48, 748 (2001).

A.P. Kuznetsov, N.V. Stankevich, L.V. Turukina, Coupled van der Pol-Duffing oscillators: phase dynamics and structure of synchronization tongues, Physica D 238, 1203 (2009).

A.P. Kuznetsov, J.P. Roman, Synchronization of coupled anisochronous auto-oscillating systems, Nonlinear Phenom. Complex Syst. 12, 54 (2009).

M.S. Siewe, S.B. Yamgoué, E.M. Moukam Kakmeni, C. Tchawoua, Chaos controlling selfsustained electromechanical seismograph system based on the Melnikov theory, Nonlinear Dyn. 62, 379-389 (2010).

U.E. Vincent, A. Kenfack, Synchronization and bifurcation structures in coupled periodically forced non-identical Duffing oscillator, Phys. Scr. 77, 045005 (2008).

J. Kengne, J.C. Chedjou, G. Kenne, K. Kyamakya, G.H. Kom, Analog circuit implementation and synchronization of a system consisting of a van der Pol oscillator linearly coupled to a Duffing oscillator, Nonlinear Dyn, 70, 21632173 (2012)

J. Kengne, F. Kenmogne, V. Kamdoum Tamba, Experiment on bifurcation and chaos in coupled anisochronous self-excited systems: Case of two coupled van der Pol-Duffing oscillators, Journal of Nonlinear Dynamics 2014, 815783 (2014).

O. Calvo, J. H. E. Cartwright, Fuzzy control of chaos, Int. J. Bifurcation Chaos 8, 1743 (1998).

G. Ablay, Sliding mode control of uncertain unified chaotic systems, Nonlinear Analysis: Hibrid System 3, 531 (2009).

J. Starrett, Control of chaos by occasional bang-bang, Phys. Rev. E67, 036203 (2003).

Diego Pazó and Ernest Montbrió, Low-dimensional dynamics of populations of pulse-coupled, Phys. Rev. X4, 011009 (2014).

Mian Zhang, Gustavo S. Wiederhecker, Sasikanth Manipatruni, Arthur Barnard, Paul

McEuen, and Michal Lipson, Synchronization of micromechanical oscillators using light, Phys. Rev. 109, 233906 (2012).

Steven H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D. 143,1-20 (2000)

Alexander L. Fradkov, Boris Andrievsky, and Robin J. Evans, Controlled synchronization under information constraints, Phys. Rev. E78,036210 (2008)

Liang Huang, Qingfei Chen, Ying-Cheng Lai, and Louis M. Pecora, Generic behavior of master-stability functions in coupled nonlinear dynamics systems, Phys. Rev. E80,036204 (2009)

Leon O. Chua, Makoto Itoh, Ljupoc Kocarev and Kevin Eckert, Chaos synchronization in Chua circuit, J. Circuits, Systems and Computers 3, 93 (1993).

Leon O. Chua, Makoto Itoh, Ljupoc Kocarev and Kevin Eckert, Experimental chaos synchronization in Chua circuit, Int. J. Bifurcation Chaos 2, 705 (1992).

R. Gonzalez, M. Prian, M.A. Fernndez, J.L. Rojas, E. Romero, A symmetric piecewise-linear chaotic system with a single equilibrium point, Int. J. Bifurcation Chaos 15, 1411 (2005).

L. Thomas and L. M. Pecora, Synchronizing nonautonomous chaotic circuits, IEEE Trans. on Circuits and Systems-II 40, 646 (1993).

W-C C. Chan and Y-D Chao, Synchronization of coupled forced oscillators, J. Math. An. and Applications 218, 97 (1998).

Tai-Ping chang, Chaotic motion in forced duffing system subject to linear and nonlinear damping, Mathematical Problems in Engineering Vol. 2017, 8 (2017).

M.S. Siewe, C.Tchawoua, and P. Woafo, Melnikov chaos in a periodically driven Rayleigh-Duffing oscillator, Mechanics Research Communications Vol. 37, 363 (2010).

Y.-Z.Wang, and F-M. Li, Dynamical properties of Duffing-van der Pol oscillator subject to both external and parametric excitations with time delayed feedback control, Journal of Vibration and Control Vol. 21,371 (2015).

J. Pena Ramirez, E. Garcia and J. Alvarez, Master-slave synchronization via dynamic control, Commun Nonlinear Sci Numer Simulat Vol. 80,104977 (2020).




DOI: https://doi.org/10.31349/RevMexFis.67.334

Refbacks

  • There are currently no refbacks.


REVISTA MEXICANA DE FÍSICA, year 67, issue 2, March-April 2021. Bimonthly Journal published by Sociedad Mexicana de Física, A. C. Departamento de Física, 2º Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Apartado Postal 70-348. Tel. (+52)55-5622-4946, https://rmf.smf.mx/ojs/rmf, e-mail: rmf@ciencias.unam.mx. Chief Editor: José Alejandro Ayala Mercado. INDAUTOR Certificate of Reserve: 04-2019-080216404400-203, ISSN: 2683-2224 (on line), 0035-001X (print), both granted by Instituto Nacional del Derecho de Autor. Responsible for the last update of this issue, Technical Staff of Sociedad Mexicana de Física, A. C., Fís. Efraín Garrido Román, 2º. Piso, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyacán, C.P. 04510 , Ciudad de México. Date of last modification, March 1st., 2021.

The responsibility of the materials published in Revista Mexicana de Física rests solely with their authors and their content does not necessarily reflect the criteria of the Editorial Committee or the Sociedad Mexicana de Física. The total or partial reproduction of the texts hereby published is authorized as long as the complete source and the electronic address of the publications are cited.

There is no fee for article processing, submission or publication.

Revista Mexicana de Física by Sociedad Mexicana de Física, A. C. is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License