Electron spin resonance and magnetic studies of nickel ions doped P$_2$O$_5$-ZnO-Na$_2$O glassy system

D.A. Rayana, Y.H. Elbasharb,c,* and S.S. Moslemd

aCentral Metallurgical Research and Development Institute, P.O.Box:87 Helwan (11421), Cairo, Egypt.
bDepartment of Basic Science, ELGazeera High institute for Engineering and Technology, Cairo, Egypt.
cEgypt Nanotechnology Center (EGNC), Cairo University, Giza, Egypt.
dBasic Science Department, Modern Academy for Engineering and Technology, Cairo, Egypt.

Received 8 October 2019; accepted 21 March 2020

We prepared 42P$_2$O$_5$-40ZnO-(18-x)Na$_2$O-(x)NiO glasses doped with xNiO where 1 \(\leq x \leq 6 \) mol.%. The optical absorption indicates that the nickel ions exist in both sites tetrahedral and octahedral as the concentration of NiO is increased. This investigation has provided the increasing degree of disorder in the glass network at higher concentrations of NiO. The magnetic characteristics investigated using two techniques: electron spin resonance spectra and magnetic properties using vibrating sample magnetometer at room temperature. The electron spin resonance spectra exhibit resonance signal without hyperfine interaction of all the investigated glass samples. It is found that Ni$^{2+}$ ions were in octahedral sites and it has $A^2\hbar^2$ as ground state. The spin-Hamiltonian parameters are evaluated from the electron spin resonance spectra and we found a variation of $g_{||}$ and g_{\perp} with different nickel concentration. Interesting results are found for the number of Ni$^{2+}$ ions participating in resonance (N) and paramagnetic susceptibility (χ). The magnetic properties were performed at room temperature under an applied field of 20 K0e and the hysteresis loops of the powders were extracted for all the considered samples.

Keywords: Phosphate glass; Transition metal ions; ESR characterization; magnetic properties.

PACS: 75.50.Lk; 81.05.Pj

DOI: https://doi.org/10.31349/RevMexFis.66.580

2. Experimental procedures

The starting materials used were NaCO$_3$, ZnO, (NH$_4$)$_2$HPO$_4$, and NiO. The glassy samples with composition 42P$_2$O$_5$-40ZnO-(18-x)Na$_2$O-xNiO, where $x = 1, 2, 3, 4, 5,$ and $6 \text{ mol.}\%$, were prepared using the melt quenching technique. Then, the mixtures of chemicals were well-grounded after carefully measuring the calculated ratios. Then, they were melted in an oven at 1000°C for 1 hour. Finally, the melted samples were quickly quenched by infusing them on a stainless-steel plate and covered with another stainless-steel plate. This casting happened in a muffle furnace, which annealed at 250°C for 2 hours, after which the furnace was turned off and the glass samples were allowed to cool inside of the furnace for 24 hours.

XRD patterns of the resulting products were carried out using a Brucker D8-advance X-ray powder diffractometer with Cu Kα radiation ($\lambda = 1.5406$ Å) operating at 40 KV and 40 mA. The diffraction data were recorded between 10$^\circ$ and 80$^\circ$ at a scanning rate of 2$^\circ$/min or 0.04$^\circ$ per 0.4 s. ESR signals of nickel doped glasses were recorded using X-band EMX spectrometer (Bruker, Germany) with standard rectangular cavity of ER 4102 having modulation frequency 100 KHz. The magnetic properties of the produced samples were characterized by using a vibrating sample magnetometer (7400-1 VSM, U.S., Lake Shore Co., Ltd., USA) at room temperature in a maximum applied field of 20 K0e. From the obtained hysteresis loops, the sat-
uration magnetization \((M_s)\), remanence magnetization \((M_r)\), and coercivity field \((H_c)\) were determined.

3. Results and discussion

The XRD pattern for the prepared glass system 42P₂O₅-40ZnO-(18-x)Na₂O-xNiO glasses doped with xNiO where 1 ≤ x ≤ 6 mol.% does not show any diffraction peak except for a halo around 20 to 40 with no indication of any peaks for crystals because of their amorphous nature shown in Fig. 1.

The two types of environments around Ni²⁺ ions seem to exist in both tetrahedral sites and in octahedral sites in the present glass networks. In general, tetragonally positioned Ni²⁺ ions do not induce the formation of any non-bridging oxygen ions but octahedrally positioned ions may act as modifiers similar to any other transition metal ions that occupy octahedral positions in the glass network. Figure 2 represents the optical absorption spectra of the studied NiO containing Na₂O-ZnO-P₂O₅ glasses. The optical absorption spectrum of the NiO at 3 mol.% samples containing NiO has four clear bands, one with high intensity located around 438 nm and the octahedral bands and does not exhibit any tetrahedral band. The \((Oh)\) band at 438 nm is associated to the spin allowed transition \(^3A_{2g}(F) \rightarrow ^1T_{1g}(P)\), while the band at 803 nm can be attributed to the existence of Ni²⁺ ion \((3d^8\) configuration) of the spin allowed transition \(^3A_{2g}(3F) \rightarrow ^3T_{1g}(F)\), and the band at 1360 nm is assigned to the spin allowed transition \(^3A_{2g}(3F) \rightarrow ^3T_{2g}(F)\) [13,14]. The \((Td)\) band at 682 nm can be attributed to transition \(^3T_1(F) \rightarrow ^3T_1(P)\) [15]. The intensity of the bands is increased with the rising of NiO content.

ESR technique is used to provide information of the electronic structure of the studied samples. The ESR of transition metal ions in glasses is very interesting, because the valance state of TM changes with the variation of glass composition and the melting temperature. In the present study, the ESR spectra of phosphate glasses containing nickel oxide are measured at room temperature in order to examine the valance state of nickel in glass network. The EPR spectra of all prepared samples are characterized by very broad lines extending from 200 G to 6200 G at room temperature as shown in Fig. 3. The consequence of the crystal field a split occurs for the degenerated free ion \(^3F\) ground state of Ni²⁺ ions, and the orbital singlet \(^4A_{2g}\) has the lowest energy level in the octahedral structure. This is manifested in the appearance of only one symmetric resonance signal centered at \(g \approx 2.11\).

The EPR spectra are analyzed by using spin-Hamiltonian without hyperfine interaction of the form [18],

\[
H_{Zeeman} = g\beta HS,
\]

where \(S\) is the electron spin operator and is taken to be equal to 1, \(H\) is the external magnetic field, \(\beta\) is the Bohn magneton and \(g\) is the isotropic factor. The solution of spin-Hamiltonian gives the values of parallel \((g_\parallel)\) and perpendicular \((g_\perp)\) components of ‘\(g\)’ tensor, which are shown in Fig. 4 and also are presented in Table I. The estimated values of \(g_\parallel\) and \(g_\perp\) are continuously varying with respect to the NiO concentration. The variation of the values indicates the change in local field around the Ni²⁺ ions.

According to the ligand field theory, the isotropic \(g\) factor of the Ni²⁺ octahedral structure is shifted from the free elec-
iron value $g_e = 2.0023$ as a consequence of the spin-orbit coupling. It is given by the relation [19]:

$$g = g_e - \frac{8\lambda}{\Delta},$$ \hspace{1cm} (2)

where λ is the effective spin-orbit coupling constant and Δ is the energy of the transition $^3A_2g(F) \rightarrow ^3T_2g(F)$. Using a value of 7303 cm$^{-1}$ for Δ (attained from optical results) [20] and a value of 2.11 for g, the calculated value of λ is -103 cm$^{-1}$, which is 30% that of the free ion value $\lambda = -335$ cm$^{-1}$ this indicates amount of covalency [21]. By using the ESR and optical spectral data, we can evaluate Owen’s ionic parameter (α^2) from the given formula:

$$g = 2.0023 - \frac{8\lambda\alpha^2}{\Delta}.\hspace{1cm} (3)$$

The value of α^2 shows the type of bonding between the Ni$^{2+}$ ions and the ligands. A pure covalent bond and pure ionic bond corresponding to values of α^2 that lie between 0.5 and 1.0, respectively. In our case, the calculated α^2 for all samples took the same value of 0.307 indicating a covalent nature. The obtained values of g_\parallel and g_\perp allow the estimating of some $d-d$ transition of Ni$^{2+}$. The following equations have been used to estimate such transition [22]:

$$g_\parallel = 2.0023 \left[1 - \frac{\beta^2\alpha^24\lambda}{\Delta E_{xy}} \right],\hspace{1cm} (4)$$

$$g_\perp = 2.0023 \left[1 - \frac{\beta^2\alpha^2\lambda}{\Delta E_{xz,yz}} \right],\hspace{1cm} (5)$$

where ΔE_{xy} and $\Delta E_{xz,yz}$ are the heights of d_{xy} and $d_{xz,yz}$ molecular orbital levels above ground state $d_{x^2} - d_{yz}$ respectively. The corresponding value of ΔE_{xy} and $\Delta E_{xz,yz}$ equals [23]

$$\Delta E_{xy} = \frac{2.0023\alpha^24\lambda}{2.0023 - g_\parallel},\hspace{1cm} (6)$$

$$\Delta E_{xz,yz} = \frac{2\lambda k^2}{2.0023 - g_\perp},\hspace{1cm} (7)$$

where k^2 is the orbital reduction factor and equal 0.914 [24]. The obtained values of ΔE_{xy} and $\Delta E_{xz,yz}$ were listed in Table I.

The ESR data can be used to calculate the paramagnetic susceptibility (χ) of the sample using the formula [25,26],

$$\chi = \frac{N g^2\beta^2 J(J+1)}{3K_B T},\hspace{1cm} (8)$$

where N is the number of spins per cm3, $g = (g_\parallel + 2g_\perp)/3$ taken from ESR data, J is the total angular momentum, K_B is the Boltzmann constant and T is the absolute temperature. By using the above equation, the paramagnetic susceptibility χ is calculated at various concentrations. The paramagnetic susceptibility χ of Ni$^{2+}$ ions glass system as a function of concentrations was listed in Table I.

The variation of ESR parameters with the concentration of NiO was demonstrated in Table I. By analyzing these results, it was found that the manifestation of the variation in the ligand field around Ni$^{2+}$ ions was reflected in the non-linear behavior for all ESR parameters with the concentration of NiO. In the framework of the ligand field theory, the lowest multiple terms 3F of the free Ni$^{2+}$ ions splits into different levels and this splitting depends on the host material. However, in this study the main contribution comes from the changes of electron spin.

Rev. Mex. Fís. 66 (5) 580–584
From that, the dependence of the exchange positions of integrals Ni\(^{2+}\) ions in the glass lattice on the interatomic distances is exponential, which seen in the optical absorption spectra at \(x = 1\ \text{mol.}\%\) of Ni\(^{2+}\) ions as first concentration, has the same three octahedral (\(Oh\)) bands [438 nm, 803 nm, and 1360 nm with spin allowed transitions \(^3A_{2g}(F) \rightarrow ^1T_{1g}(P), \) \(^3A_{2g}(3F) \rightarrow ^3T_{1g}(F)\), and \(^3A_{2g}(3F) \rightarrow ^3T_{2g}(F)\), respectively] without any tetrahedral (\(Td\)) band; then, the tetrahedral (\(Td\)) band [682 nm with transition \(^3T_1(F) \rightarrow ^3T_1(P)\)] appeared with high concentration of Ni\(^{2+}\) ions. Meanwhile, the exchange interaction in a pair of ions in a magnetically dilute crystal is identical, other conditions being constant, with the exchange interaction in magnetically concentrated systems which this result is valid for, i.e., a weak exchange interaction when the exchange is via a paragmagnetic ion.

The magnetization of the formed NiO doped 42P\(_2\)O\(_5\)-40ZnO-(18-\(x\))Na\(_2\)O-xNiO glasses system where \(1 \geq x \geq 6\ \text{mol.}\%\) was measured at room temperature under an applied field of 20 K Oe and determining magnetic anisotropies from hysteresis loops. Plots of magnetization (\(M\)) as a function of the magnetic field (\(H\)) for different NiO ratios are shown in Fig. 5. The magnetic parameters of the produced glass system are extracted in Table II.

Figure 5 shows the paramagnetic behavior of glass matrix which clearly displays the anomalous hysteresis loop. Anomalous behavior which is initially positive before going through zero and becoming negative as shown in the inset of Fig. 5.

Table II. Magnetic properties of 42P\(_2\)O\(_5\)-40ZnO-(18-\(x\))Na\(_2\)O-xNiO glasses system with different Ni\(^{2+}\) ions content from 1% to 6%.

<table>
<thead>
<tr>
<th>NiO mol.%</th>
<th>(H_c) (G)</th>
<th>(M_x \times 10^{-8})</th>
<th>(M_r \times 10^{-2}) (emu/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>384.55</td>
<td>6.68</td>
<td>1.58</td>
</tr>
<tr>
<td>2</td>
<td>224.06</td>
<td>6.20</td>
<td>9.43</td>
</tr>
<tr>
<td>3</td>
<td>578.33</td>
<td>2.97</td>
<td>1.07</td>
</tr>
<tr>
<td>4</td>
<td>727.09</td>
<td>5.71</td>
<td>1.24</td>
</tr>
<tr>
<td>5</td>
<td>455.45</td>
<td>4.46</td>
<td>1.14</td>
</tr>
<tr>
<td>6</td>
<td>185.51</td>
<td>5.80</td>
<td>4.02</td>
</tr>
</tbody>
</table>

This hysteresis behavior can be explained by modifying the amorphous disorder interface regions and also due to the coupling effect of Ni\(^{2+}\) ions dependent. The change in glass network by adding the NiO which arranged in both tetrahedral (\(Td\)) band and octahedral (\(Oh\)) bands symmetry sites –as discussed in optical absorbance spectra– and the number of the surrounding magnetic atoms play the rule for the continuous variation in magnetic parameters. These findings are in agreement with the ESR results.

4. Conclusion

The 42P\(_2\)O\(_5\)-40ZnO-(18-\(x\))Na\(_2\)O-(\(x\))NiO, where \(x = 1, 2, 3, 4, 5,\) and 6 mol.%, glass samples are prepared by using the melt quenching method. From ESR measurements it is clear that Ni\(^{2+}\) ions are existing in octahedral sites with molecular orbital levels above ground state \(dx^2 - dy^2\). The spin-Hamiltonian parameters are influenced by the composition of glass, which attributed to the change of ligand field strength around Ni\(^{2+}\) ions concentrations. The values of the bonding parameters are also evaluated from ESR data and it was found that the Ni\(^{2+}\) ions and the ligands exhibited a covalent nature. The magnetic behavior demonstrated a hysteresis curve which indicates that the NiO doped glass samples are paramagnetic materials that may be useful for developing new magneto-optical devices.

