Structural, elastic, electronic, and magnetic properties of quaternary alloys BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$: A first-principles study

S. Taba, A. Boudalia, M. Berberb,c,*, M. Driss Khodjaa, O. Lhaj El Hachemid, H. Moujrie

aLaboratory of Physico-chemical Studies, University of Saida, Algeria.
bCentre Universitaire Nour Bachir El Bayadh, 32000 El Bayadh, Algérie.
cLaboratoire d’Instrumentation et Matériaux Avancés, Centre Universitaire Nour Bachir El-Bayadh, BP 900 route Aflou, 32000, Algérie.
dLPMMAT, Faculty of Sciences Ain Chock, Hassan II University of Casablanca, Morocco.
eRenewable Energy Laboratory and dynamic systems, Faculté des Sciences Ain-Chock, Université Hassan II de Casablanca, Morocco.

In this study, we have employed the first-principle methods based on density functional theory to investigate the structural, elastic, electronic, and magnetic properties of BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$. The exchange and correlation potential are described by the generalized gradient approximation of Perdew, Burke, and Ernzerhof (GGA-PBEsol) + SOC coupled with TB-mBJ approaches. The studied structure shows that the compound BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$ is stable in the ferromagnetic phase, the elastic property indicates that the structure is brittle and mechanically stable. The half-metallic description is predicted with the energy spin bandgap in the spin-up channel. The structure attributed to half-metallic ferromagnetism could be suitable for spintronics devices. To our knowledge, this is the first time that a study has been done on this alloy, and we would like it to serve as a reference for the next studies.

Keywords: First-principles computation; GGA-PBEsol approximation; SOC; TB-mBJ; magnetic properties.

PACS: 71.15.Mb; 71.20.-b; 74.25.Ha

DOI: https://doi.org/10.31349/RevMexFis.66.627

1. Introduction

Since the discovery of the spin at the beginning of the last century [1-3], which was an inflection point and a profound change for semiconductor applications. After some years, a new discipline was created in physics to study electron spin; it is spintronics. The importance of applications of spintronics or magnetoelectronics is store information and the giant magnetoresistance (GMR) for drive head technology [4]. To change for semiconductor applications. After some years, a new discipline was created in physics to study electron spin; it is spintronics. The importance of applications of spintronics or magnetoelectronics is store information and the giant magnetoresistance (GMR) for drive head technology [4]. To manufacture the components intended for spintronics, the researchers doped the semiconductor by transition elements, when will later call them DMSs (the dilute magnetic semiconductors). The first DMSs In$_{1−x}$Mn$_x$As was produced by a molecule beam epitaxy (MBE) [5]. Nevertheless, work has not stopped and is still rising; in the last decade many researchers are working on diluted magnetic III-V and II-VI semiconductors for spintronics applications [6-12]. The magnetic properties of Heusler are calculated by several researchers [13-18]. Researchers and scientists pursue another work line to identify other spintronic components and between these axes the ternaries II-VI and III-V doped with a metallic element [19-20]. The essential intention of this article is to predict the half-metallic property in III-V-N alloy, by doping of transition metal atom manganese, we have chosen the following quaternary BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$ alloy.

2. Calculation details

Developed on full potential linearized augmented plane wave (FP-LAPW) method in accordance with the framework of DFT (density functional theory) [21] electronic structure, half-metallic behavior, and magnetic properties were investigated using WIEN2k code [22-24]. Generalized gradient approximation within Perdew-Burke-Ernzerhof (PBEsol) [25] approximation was employed for exchange-correlation, jointed with the modified Becke-Johnson (mBJ) potential [26] and also spin-orbit coupling (SOC) [27-29] was applied. Boron-Bismuth (BBi) crystalizes in the zincblende structure (no. 216) [27-29]. Its conventional structure has two types of atoms, B and Bi, located at (0,0,0) and (0.25,0.25,0.25) positions, respectively. We create a supercell of 16 atoms, 8 atoms for Boron (B) and 8 for Bismuth (Bi), we substituted one atom of Manganese (Mn), and one atom of Nitrogen (N) at Bismuth (Bi) sites to create BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$ zincblende structure. In this article, we have designed the following calculation parameters: the muffin-tin radii (MT) for B, Bi, Mn, and N to be 1.64, 2.39, 2.29, and 2.13 atomic units (a.u.), respectively. The K_{max} = 9 (RMT)$^{-1}$ (K_{max} is the plane wave cut-off, and RMT is the smallest of all atomic sphere radii). The Fourier expanded charge density was truncated at G_{max} = 12 (Ryd)$^{1/2}$, the ℓ-expansion of the non-
spherical potential and charge density was carried out up to $l_{\text{max}} = 10$. The cut-off energy is set to -6 Ryd to separate the core from valence states. The self-consistent calculations are judged to be converged when the total energy of the system is stable within 10^{-4} Ryd.

3. Results and discussions

3.1. Phase stability, Structural and elastic properties

To confirm the phase stability of the structure, we carried out the volume optimization and plotted the energy as a function of the volume for both magnetic and non-magnetic cases. Figure 1 exhibit the energy as a function of the volume. For the ferromagnetic curve localized under to non-magnetic curv, it is concluded that the compound contains the minimum energy in the ferromagnetic phase compared to the non-magnetic phase, which indicates that the BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$ alloy is stable in ferromagnetic phase. The ground-state properties such as the equilibrium lattice constant a, the bulk modulus B, the anisotropy factor E', minimum equilibrium energy E_0, and equilibrium volume V_0, are presented in Table I.

The derivative of the energy as a function of the lattice strain is essential for knowing the elastic constants [30]. This strain is picked so that the volume of the unit cell is saved, for the situation of the cubic framework. Along these lines, for the figuring of flexible constants: C_{11}, C_{12}, and C_{44}, we have utilized the Mehl strategy [31]. Following this technique, we determined the shear modulus $C_{11} - C_{12}$ from the volume-preserving orthorhombic strain tensor:

$$
\begin{bmatrix}
1 + \delta & 0 & 0 \\
0 & 1 - \delta & 0 \\
0 & 0 & 1/(1 - \delta^2)
\end{bmatrix}
$$

Utilization of this strain changes the total energy from its unstrained value to:

$$
E(\delta) = E(-\delta) = E(0) + (C_{11} - C_{12})V_0\delta^2 + O(\delta^4),
$$

Where V_0 is the volume of the unstrained equilibrium unit cell, and $E(0)$ is its total energy. For the elastic constant C_{44}, we used a volume-conserving monoclinic tensor:

$$
\begin{bmatrix}
1 & \delta/2 & 0 \\
\delta/2 & 1 & 0 \\
0 & 0 & 4/(4 - \delta^2)
\end{bmatrix}
$$

Figure 1. Volume optimization curve of BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$ structure

Which changes the total energy to:

$$
E(\delta) = E(-\delta) = E(0) + \frac{1}{2} C_{44}V_0\delta^2 + O(\delta^4).
$$

For isotropic cubic crystal, the bulk modulus B is given by:

$$
B = \frac{1}{3}(C_{11} + 2C_{12}).
$$

The Young’s modulus E, shear modulus G, and Lame’s coefficients (μ and λ) can be derived from the elastic constants, using the following standard relations:

$$
E = \frac{9BG}{(3B + G)},
$$

$$
G = \frac{(C_{11} - C_{12} + C_{44})}{5},
$$

$$
\mu = \frac{E}{2(1 + \sigma)},
$$

$$
\lambda = \frac{\sigma E}{((1 + \sigma)(1 - 2\sigma))}.
$$

Similarly, the Poisson coefficient (σ) provides information on the ductility or fragility of the materials and is expressed as follows:

$$
\sigma = 1 - \frac{E}{6B}.
$$

The anisotropy factor is given by the following equation:

$$
A = \frac{2C_{44}}{C_{11} - C_{12}}.
$$

<table>
<thead>
<tr>
<th>a (Å)</th>
<th>B (GPa)</th>
<th>B'</th>
<th>Energy E_0 (Ry)</th>
<th>Volume V_0 (a.u.3)</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5096</td>
<td>91.3200</td>
<td>4.6243</td>
<td>-261728.202334</td>
<td>1961.0587</td>
<td>Ferromagnetic</td>
</tr>
<tr>
<td>10.4686</td>
<td>91.1098</td>
<td>4.6388</td>
<td>-261728.130051</td>
<td>1935.5166</td>
<td>Non-magnetic</td>
</tr>
</tbody>
</table>

TABLE I. Calculated lattice constant (a), bulk modulus (B), pressure derivative B', minimum equilibrium energy E_0, and equilibrium volume V_0 BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$.
TABLE II. The calculated elastic constants of the BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$.

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C$_{11}$</td>
<td>143.008 (GPa)</td>
<td>C$_{12}$</td>
<td>65.375 (GPa)</td>
<td>4C$_{44}$</td>
<td>102.444 (GPa)</td>
<td>B</td>
<td>91.252 (GPa)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G$_V$</td>
<td>76.993 (GPa)</td>
<td>G$_R$</td>
<td>61.874 (GPa)</td>
<td>G$_H$</td>
<td>69.433 (GPa)</td>
<td>E</td>
<td>166.158 (GPa)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>2.639</td>
<td>σ</td>
<td>0.196</td>
<td>µ</td>
<td>69.433 (GPa)</td>
<td>λ</td>
<td>44.963 (GPa)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v$_m$</td>
<td>3240.400 (m/s)</td>
<td>v$_t$</td>
<td>2936.280 (m/s)</td>
<td>v$_l$</td>
<td>4777.730 (m/s)</td>
<td>v$_m$</td>
<td>367.017 (K)</td>
</tr>
</tbody>
</table>

Stability criteria for cubic crystals require [32]:

\[
C_{11} - C_{12} > 0, \quad C_{11} > 0, \quad C_{44} > 0, \\
C_{11} + 2C_{12} > 0, \quad C_{12} < B < C_{11}.
\] (12)

These conditions in our study are satisfying, and the structure is therefore mechanically stable. The calculated values of the elastic constants (C$_{11}$, C$_{12}$ and, C$_{44}$), shear modulus G, Young’s modulus E, the anisotropy A, Poisson’s ratio σ, and Lame’s coefficients (µ and λ) are given in Table II.

Acquiring calculated Young’s modulus E, bulk modulus B, and shear modulus G, one can estimate the Debye temperature, which is an important fundamental parameter closely related to many physical properties such as elastic constants, specific heat, and melting temperature. One of the main techniques to predict the Debye temperature (θ_D) is from elastic constants data, since θ_D may be estimated from the average sound velocity, v$_m$ by the following expression [33]:

\[
\theta_D = \frac{h}{k_B} \left[\frac{3h}{4\pi V_a} \right]^{1/3} v_m.
\] (13)

Where h is Planck’s constant, k_B Boltzmann’s constant, and V_a is the atomic volume. The standard sound velocity in the polycrystalline material is given by [34]:

\[
v_m = \left[\frac{1}{3} \left(\frac{2}{v_l^3} + \frac{1}{v_t^3} \right) \right]^{1/3}
\] (14)

where v$_l$ and v$_t$ are the longitudinal and transverse sound velocity in an isotropic material which can be attained using

The calculated sound velocity and Debye temperature are given in Table II. However, to our knowledge, there are no data available related to these properties in the literature for these compounds. Pugh [36] propose the ratio B/G, a relationship related to brittle or ductile behavior of materials: a high B/G ratio is associated with ductility, whereas a low value corresponds to the brittleness. The critical value separating ductile and brittle material is 1.75; the ratio B/G is 1.314 for BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$, so the structure is brittle.
3.2. Electronic properties and half-metallic behavior

In this part, we present the electronic band structure, total and partial densities of states for BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$ using the GGA-PBEsol and TB-mBJ approaches. Figure 2 exhibits the spin-polarized band structure obtained with TB-mBJ for BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$ for majority spin (spin-up). It is observed that the half-metallic gap is seen in the spin-up channel, the indirect bandgap is about 0.25 eV between the Γ and L high symmetry points. Figure 3 shows the band structure for BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$ for minority spin (spin down), it is clear that the maximum of the valence band is above the Fermi level, therefore the structure has metallic behavior. The total (T) and partial (P) electron densities of states of BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$ are shown in Fig. 4 and Fig. 5, respectively. Figure 3 shows that BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$ compound present half-metallic ferromagnetic comportment as the density of states (DOS) passes Fermi level in the spin-down version, and it is also clear from the figure that the peaks around -1.8 eV are mainly contributed by the total density states of Mn. The partial density of states (PDOS) of BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$ is presented in Fig. 4, and it is more apparent that 3d states of Mn largely implicated in the peaks around -1.81 and 2.80 eV. The energy gap is acquired resulting from the hybridization of the 3d-state of Mn, p-state of Bi, and p state of N, as shown in Fig. 4. The half-metallic ferromagnetic behavior of BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$ imply applications of the structure in the spintronic devices.

4. Conclusion

In this paper, the GGA-PBEsol coupled with TB-mBJ study to investigate the elastic, electronic and magnetic properties within the framework of density functional theory based on FP-LAPW method. The results show that BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$ structure is stable in the ferromagnetic phase and mechanically. The compound has half-metallic ferromagnetic and can be used in spintronics applications. From our knowledge, there are no previous theoretical or experimental studies on the BBi$_{0.75}$Mn$_{0.125}$N$_{0.125}$ material, thus we hope that our results serve as a reference for future theoretical and experimental research.

