Z1 band in RbCl crystals with Mg++, Ca++, Sr++ and Ba++ impurities

D. CÁRDENAS-GARCÍA, E.R. LÓPEZ-TÉLLEZ AND C. RUÍZ-MEJÍA
Instituto de Física, Universidad Nacional Autónoma de México
Apartado postal 20-364, 01000 México, D.F., México
Recibido el 6 de marzo de 1992; aceptado el 5 de junio de 1992

ABSTRACT. The optical absorption of the Z1 band in RbCl with Mg++, Ca++, Sr++ and Ba++ impurities is studied, by use of point-ion [1] and ion-size correction [2] models. For the calculations Gaussian wave functions were used. Good agreement with the experimental optical absorption values were found for the xy excited wave function when the point-ion model is used. For the ion-size correction method the excited wave function z is the adequate. For the calculations Gaussian functions were used. According to a recent paper [17] only the Gaussian functions can describe the Z1-center.

RESUMEN. Se calcula la absorción óptica de la banda Z1 en cristales de RbCl con impurezas de Mg++, Ca++, Sr++ y Ba++. Los métodos usados fueron el del ion-puntual [1] y el método de corrección de tamaño [2]. Se usaron funciones Gaussianas que de acuerdo a nuestros resultados son las únicas [17] que reproducen los resultados experimentales. De los cálculos se concluye que para el método de ion puntual conviene usar la función xy para el estado excitado, y para el método de corrección de tamaño la función z.

PACS: 61.70-r; 71.55.-i; 78.50.-w

1. INTRODUCTION

The Z1-center consists of an F center in [0 0 0] with a [1 0 0] cation vacancy and a [1 1 1] divalent ion near to it [3].

The increasing interest in the study of the Z1-band in alkali halides is due to the important practical applications in recording optical information [4].

Theoretical studies on the Z1-band are scarce. Some models have been proposed for the Z1 center [5-9], but at the present moment there is evidence favoring a model in which the electron responsible for the optical absorption is centered on an anion vacancy. There are some papers [10-13] in which the calculations of the Z1-center has been based on impurity centered models.

Katz et al. [14] conducted an experimental and perturbative theoretical study of the Z1-band in RbCl: Sr++. In this work a phenomenological model was tentatively proposed and worked out to account for the observed transition energies. Dick [15] carried out a simple variational calculation of the ground and excited state energies of a vacancy-centered model for Z1-center in alkali halides. In that paper [15] positive values of the excited state energies are found. Dick's calculations were revised by Weber and Dick [16] using the ion-size correction model of Bartram et al. [2]. They [16] obtained a large splitting of the
three 2p states. Comparison with the experimental values showed good agreement only for the lowest of the three calculated transition energies. Weber and Dick [16] used wave functions type I, II and III of Gourary and Adrian [1]. Recently [17] we revised the Weber and Dick paper [16] in which they used the Gourary and Adrian [1] wave functions type I, II and III. We reproduced their reported results [16], for the ground state of several alkali halides. The more important part of the energy functional is given for the point-ion contribution. For the excited state we reproduce their point-ion contribution, but not their values for the ion-size correction method [2]. As matter of fact we do not found a minimum for the energy functional of the excited state using Gourary and Adrian wave functions type I, II, III and the ion-size correction method [2]. The discrepancy with the Weber and Dick [16] paper was discussed before [11]. Here we present results for the Z_1-center in RbCl and several impurities using Gaussian functions, for which good agreement with experimental results [17] were found.

2. Theory

The energy functional \(E_{1s}^Z \) corresponding to the Gaussian function is of the form

\[
E_{1s}^Z = E_{1s} + Y_{1s}(\sqrt{3} a) - Y_{1s}(a)
\]

where

\[
E_{1s} = \frac{3}{2} \lambda_g^2 - \sum_{z_i \geq y_i \geq x_i \geq 0}^I h_i(-1)^{1+x_i+y_i+z_i}A_g^2 \frac{(\pi/2)^{3/2}}{r_i \lambda_g^3} \text{erf}(\sqrt{2}\lambda_g r_i)
\]

and

\[
Y_{1s}(r) = -A_g^2 \frac{(\pi/2)^{3/2}}{r \lambda_g^3} \text{erf}(\sqrt{2}\lambda_g r)
\]

\(A_g \) is the normalization constant and \(\lambda_g \) the variational parameter.

The energy functional \(E_{2p}^Z \) corresponding to the excited state is

\[
E_{2p}^Z = E_{2p} + Y_{2p}(\sqrt{3} a) - Y_{2p}(a)
\]

where

\[
E_{2p} = \frac{\pi^{3/2} A_c^2}{\lambda_c^3} \sqrt{2} \frac{5}{32} + \sum_{z_i \geq y_i \geq x_i \geq 0}^I h_i(-1)^{1+x_i+y_i+z_i} \left\{ \frac{\pi A_c^2}{3 (\sqrt{2} \lambda_c^3)^4} \exp(-2) \frac{r_i^2}{r_i^2} \right\}
\]

\[
- \frac{\pi A_c^2}{r_i (\sqrt{2} \lambda_c)^5/2} \frac{\sqrt{\pi}}{2} \text{erf}(\sqrt{2}\lambda_c r_i)
\]
and

\[Y_{2p}(\vec{r}) = \frac{\pi A_e^2 Q}{3(\sqrt{2} \lambda_e)^4} \exp(-2\lambda_e^2 r^2) - \frac{\pi A_e^2 Q}{\sqrt{2}} \frac{\sqrt{\pi}}{2} \exp(\sqrt{2} \lambda_e r) \]

\[+ \frac{8\pi Q P_2(\cos \theta) A_e^2}{15 \pi^2 (\sqrt{2} \lambda_e)^5} \left[\left(\frac{(\sqrt{2} \lambda_e r)^5}{2} + \frac{5}{4} (2 \lambda_e r)^3 \right) + \frac{15}{8} (\sqrt{2} \lambda_e r) \exp(-2\lambda_e^2 r^2) + \frac{15}{8} \frac{\sqrt{\pi}}{2} \exp(\sqrt{2} \lambda_e r) \right] \]

\[+ \frac{8\pi}{15} A_e^2 P_2(\cos \theta) r^2 \left[\frac{1}{2} \exp(-2\lambda_e^2 r^2) \right] \]

(6)

\(A_e \) is the normalization constant and \(\lambda_e \) is the variational parameter, \(Q \) is the charge distribution at a point \(r \), \(P_2(\cos \theta) \) is the Legendre polynomial of order two, where \(\theta \) is the angle between the vector of the point \(r \) and the axis of the \(p \)-function. \(E_{1s} \) and \(E_{2p} \) are the energy functionals corresponding to the \(F \)-center.

In the case of the excited state it is necessary to choose the directions for the \(p \)-function axes according to the symmetry of the impurity and the vacancy (the \(Z_1 \)-center). For our case we used the direction of the axes calculated by Dick [15].

The ground-state energy is obtained by minimizing an energy functional of the form

\[E^Z = E_g + \sum_s \left[A_s + (\tilde{V}_p^Z - U_s) B_s \right] |\psi_{1s}(\vec{r}_s)|^2 \]

(7)

For the first-excited-state the energy is obtained minimizing an energy functional of the form

\[E^Z = E_{2p} + \sum_s \left[A_s + (\tilde{V}_p^Z - U_s) B_s \right] |\psi_{2p}(\vec{r}_s)|^2 \]

(8)

where

\[\tilde{V}_p^Z = \tilde{V}_p^F - \tilde{V}_{pl} + \left[A_C + (\tilde{V}_p^F - U_3) B_C \right] \delta(\hat{r} - \hat{r}_C) \]

\[+ \left[A_D - A_C + (\tilde{V}_p^F - U_3)(B_D - B_C) \right] \delta(\hat{r} - \hat{r}_D) \]

(9)

where \(U_s \) is the potential of the \(s \)-th ion due to all the other ions, \(A_s \) and \(B_s \) are the characteristic parameters of the ions alone, \(V_{pl} \) is the point ion potential and \(V_p^F \) the pseudopotential corresponding to the \(F \)-center. The indices \(D \) and \(C \) mean divalent impurity and cation respectively.

3. Results and conclusions

In order to study the theoretical optical absorption of the \(Z_1 \)-band in RbCl crystals with \(\text{Mg}^{++}, \text{Ca}^{++}, \text{Sr}^{++} \) and \(\text{Ba}^{++} \) impurities, we made calculations for the ground and
TABLE I. Energy values of the ground and excited states for RbCl crystals using the point-ion and the ion-size-correction methods. The λ_{1s} and λ_{2p} are the Gaussian wave function parameters and V_{1s} and V_{2p} the value of the pseudopotential in a.u.

<table>
<thead>
<tr>
<th></th>
<th>λ_{1s}</th>
<th>$-V_{1s}$</th>
<th>$-E_{1s}$</th>
<th>λ_{2p}</th>
<th>$-V_{2p}$</th>
<th>$-E_{2p}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RbCl</td>
<td>1.21</td>
<td>0.095</td>
<td>0.1059</td>
<td>0.94</td>
<td>0.127</td>
<td>0.0295</td>
</tr>
<tr>
<td>Mg$^{++}$</td>
<td>1.21</td>
<td>0.095</td>
<td>0.1059</td>
<td>0.95</td>
<td>0.127</td>
<td>0.0287</td>
</tr>
<tr>
<td>Ca$^{++}$</td>
<td>1.21</td>
<td>0.095</td>
<td>0.1059</td>
<td>0.95</td>
<td>0.127</td>
<td>0.0284</td>
</tr>
<tr>
<td>Sr$^{++}$</td>
<td>1.21</td>
<td>0.095</td>
<td>0.1059</td>
<td>0.95</td>
<td>0.128</td>
<td>0.0280</td>
</tr>
<tr>
<td>Ba$^{++}$</td>
<td>1.21</td>
<td>0.095</td>
<td>0.1059</td>
<td>0.95</td>
<td>0.128</td>
<td>0.0280</td>
</tr>
</tbody>
</table>

TABLE II. Optical absorption of the Z_1-band for RbCl crystals with Mg$^{++}$, Ca$^{++}$, Sr$^{++}$ and Ba$^{++}$ impurities. The experimental values were taken from Refs. [16] and [14]. The energies are in a.u.

<table>
<thead>
<tr>
<th></th>
<th>ΔE</th>
<th>ΔE_{exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>RbCl</td>
<td>Mg$^{++}$</td>
<td>0.0764</td>
</tr>
<tr>
<td></td>
<td>Ca$^{++}$</td>
<td>0.0772</td>
</tr>
<tr>
<td></td>
<td>Sr$^{++}$</td>
<td>0.0775</td>
</tr>
<tr>
<td></td>
<td>Ba$^{++}$</td>
<td>0.0779</td>
</tr>
</tbody>
</table>

excited states, using the point-ion and the ion-size correction methods. Table I shows the variational parameters λ_{1s} and λ_{2p}, the pseudopotentials V_{1s} and V_{2p} and the corresponding energies for the Gaussian functions. Table II shows the optical absorption of the Z_1-center for RbCl for Mg$^{++}$, Ca$^{++}$, Sr$^{++}$ and Ba$^{++}$ impurities, using the semiempirical parameter $[2,\alpha] = 1$.

For the ground state of the Z_1 center the energy functional is minimized using the same ground state wave function than is used for the F center. In the case of the excited state is necessary to choose the direction of the p-function axes according to the symmetry of the impurity and the vacancy which together with the F center forms the Z_1 center. A suitable choice of the three mutually perpendicular axis will be the three principal axes of the field gradient tensor set up by the Z_1 center. Dick [15] calculated these axes. The direction cosines of the principal axes are approximately $(0,0,1)$ (wave function z of the F center), $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ (xy wave function; $xy = \frac{1}{\sqrt{2}}(\psi_{ex} + \psi_{ey})$, where ψ_{ex} and ψ_{ey} are excited state wave functions corresponding to F center), and $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$ ($x\bar{y}$ wave function; $x\bar{y} = \frac{1}{\sqrt{2}}(\psi_{ex} - \psi_{ey})$). We found that is useful to choose the $x\bar{y}$ axis when the point-ion method is used, and z axis when the optical absorption values are obtained using the ion-size correction method. Experimentally [39] there is a very small change in the optical absorption of the Z_1 center when the divalent impurity is changed. So, the point-ion method gives useful information.

For the crystal RbCl:Ca$^{++}$ there is a good agreement between theoretical and experimental values [15]. Table II shows the experimental value [14] for RbCl:Sr$^{++}$ which is not close to the experimental value. Because it can not exist so large difference [39] between the experimental value of the optical absorption for RbCl:Ca$^{++}$ and RbCl:Sr$^{++}$, one of the two values must be wrong. The optical absorption of the Z_1-center follows the Ivey
law [40]. That means that the optical absorption of the RbCl ($a = 6.19$ a.u.) crystal must be bigger than the Z_1-center optical absorption of KBr crystal ($a = 6.23$ a.u.) which is 0.069 a.u. and smaller than the Z_1-center optical absorption of the KCl crystal ($a = 5.93$ a.u.) which is 0.077 a.u. But the optical absorption value of the Z_1-center in RbCl:Sr^{++} given by Katz et al. [14] is 0.065 a.u.

The Bartram et al. method [2] works reasonably well to describe the color centers [18-27]. There are other methods [27-37] that could be used for the calculation of the Z_1 band. Because of the low symmetry of the Z_1-center, the Bartram et al. method [2] can be used as a simpler way than others.

References

5. F. Seitz, Phys. Rev. 83 (1951) 134.