Higher Spin States in Neutron Rich Nuclei

S. ZHU, X. ZHAO, J. H. HAMILTON, A. V. RAMAYYA, Q. LU
W.-C. MA, L. K. PEKER, J. KORMICKI, H. XIE, W. B. GAO, J. K. DENG
Vanderbilt University, Physics Department, Nashville, TN 37235 (USA)

I. Y. LEE, N. R. JOHNSON, F. K. MCGOWAN, C. E. BEMIS
Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)

J. D. COLE, R. ARYAEINEJAD
Idaho National Engineering Lab., Idaho Falls, ID 83415 (USA)

G. TER-AKOPIAN and YU. OGANESSIAN
Joint Institute for Nuclear Research, Dubna, RUSSIA

ABSTRACT. Recent studies of the products produced in spontaneous fission (SF) have shown an unexpected richness of information about previously inaccessible higher spin studies in neutron rich nuclei. Recent evidence for octupole deformation in 144,146Ba, 164Yb and 226Ra have come from SF and other techniques. New insights into the structure of nuclei in the $A = 100-120$ and 136-152 regions have been obtained from two different SF $\gamma - \gamma$ coincidence studies of 252Cf in a Close Packed Ball with 20 Compton suppressed Ge detectors, where one experiment also included a fission fragment detector inside the ball at the Holifield Heavy Ion Research Facility, as well as a similar study at Argonne. New data resolve problems related to shape coexistence in 100Sr, 102Zr and provide new insights into the super deformation in this region. New high spin states up to 16^+, a record in such neutron rich nuclei, were found in 138,140Xe, 140Ba, $^{146-150}$Ce and 150,152Nd in our HHIRF work and levels identified for the first time in 136Te and 149Ce. The J_1 moments of inertia for 148,150Ge and 150,152Nd exhibit an unexpected crossing pattern at high spins. These data also provide new insight into the fission process itself.

RESUMEN. Estudios recientes de los productos de la fisión espontánea (SF) han mostrado una riqueza inesperada de información sobre estados previamente inaccesibles de espines altos en núcleos ricos en neutrones. Evidencias recientes de la deformación octupolar en 144,146Ba, 164Yb y 226Ra se han obtenido de SF y otras técnicas. Nuevos puntos de vista en la estructura de núcleos en las regiones $A = 100-120$ y 136-152, se han obtenido de dos estudios diferentes sobre coincidencias $\gamma - \gamma$ en la SF de 252Cf en un “Close Packed Ball” con 20 detectores de Ge con supresión Compton; en donde uno de los experimentos también incluyó un detector de fragmentos de fisión dentro de la bola en el laboratorio de investigaciones de iones pesados de Holifield (HHIRF), así como un estudio similar en Argonne. Nuevos datos resuelven problemas relacionados a la coexistencia de formas en 100Sr, 102Zr y proporcionan visiones nuevas de la superdeformación en esta región. Se encontraron en trabajos en el HHIRF nuevos estados de espines altos hasta 16^+, un record, en tales núcleos ricos en neutrones como 138,140Xe, 140Ba, $^{146-150}$Ce y 150,152Nd y se identificaron, por primera vez, niveles en 136Te y 149Ce. Los momentos de inercia J_1 para 148,150Ge y 150,152Nd exhiben un patrón de cruzamiento inesperado en espines altos. Estos datos también dan lugar a nuevas consideraciones sobre el proceso mismo de fisión.

PACS: 21.10.-k; 21.90+f
INTRODUCTION

Nuclei on the neutron rich side of beta stability have long been of interest for nuclear structure studies because they probe different regions of the single particle spectrum and different shell gap combinations for both spherical and deformed shapes. However, such nuclei have been a difficult challenge experimentally. Much information has been gained about the properties of neutron rich nuclei at low spin from the study of radioactive isotopes produced in neutron induced, and more recently, proton induced fission of uranium [1]. Such studies have been made possible by the use of isotope separators on line to reactors and more recently to low energy proton accelerators. More recently, new regions of radioactive neutron rich nuclei have been opened up for study through the use of multinucleon transfer reactions for examples, in the mass 50-80 and actinide regions [2,3].

However, to test many of the theoretical predictions of nuclear models one needs information about the higher spin states in nuclei in addition to their low spin states populated in radioactive decays. Higher spin states in neutron rich nuclei have been an even more difficult challenge than the lower spin states accessible through decay studies. One cannot reach the higher spin states in these nuclei by heavy ion fusion evaporation reactions as carried out extensively for proton rich nuclei. Until recently, untapped sources of information on higher spin states, as well as low spin states, of neutron rich nuclei have been the study of the prompt gamma rays from the fragments produced in spontaneous (SF) and induced (IF) fission of heavy elements.

Many years ago prompt SF studies were used to suggest for the first time that 98Sr and 100Zr had unusually large ground state deformations [4]. The availability of higher efficiency multi-detector arrays of Compton suppressed Ge detectors has brought on a renewed interest in studies of the prompt gamma rays of the fragments from spontaneous and induced fission. Groups at Argonne, Daresbury, and a Vanderbilt-Oak Ridge-Idaho-Dubna collaboration have carried out several such studies from spontaneous [5-9] and heavy-ion induced [10] fission which have revealed new insights into our knowledge of neutron rich nuclei [5-10]. This paper is primarily a review of these studies, including recent, unpublished results [6,9].

Much of the work presented here comes from two experiments carried out at the Holifield Heavy Ion Research Facility (HHIRF) in the 20 Compton suppressed Ge detector Close-Packed Ball array [6,9] with 252Cf SF sources. In the first experiment a 252Cf source with 3,900 fission events/sec was coated on the inside surface of a gas-filled ionization chamber which was placed inside the Ge ball to allow fission-fragment-γ-γ-coincidences to be recorded [6]. A total of 1.5×10^7 fragment-γ-γ-coincidences were recorded. New, higher spin studies up to 14^+ in some cases, were observed in 19 nuclei, and the levels of 136Te were established for the first time. These data allow one to study the changes from vibrational to deformed structures and to see the influence of rotation aligned structures at higher spins from only a short run. In order to improve the statistics and to see higher spin states, a stronger 252Cf source was run in the same Close-Packed Ball and 1.9×10^9 γ-γ events were recorded [9]. In these data states to 16^+, a record for neutron rich nuclei, were observed in some of the level schemes. A number of new insights are obtained from these data.
Stable ground state octupole deformations have been one of the exciting recent new insights into nuclear structure with the discovery of parity doublets in the regions of At, Ra and Th nuclei (see review of Nazarewicz, Ref. [11]). Nuclei with permanent octupole deformation do not have reflection symmetry (see the classic paper of Leander et al., Ref. [12]). Reflection asymmetry gives rise to a doubling of states with opposite parity in odd-A nuclei, as first observed in the actinide elements, for example 223Th (Ref. [13]).

The sequences of rotational states in 223Th can be understood as the coupling of an octupole deformed core with an unpaired neutron. In even-even nuclei one observes even- and odd-parity rotational bands, as shown in Fig. 1. The GSI Coulomb excitation group have Coulomb excited the radioactive target 226Ra($t_{1/2} = 1600$ yr) with a 208Pb beam [14]. They extracted electric quadrupole, hexadecapole, and, for the first time, octupole

FIGURE 1. Coulomb excited levels in 226Ra (Ref. [14]).

TABLE I. Reduced transition probabilities and charge deformation parameters in 226Ra (Ref. [14]).

<table>
<thead>
<tr>
<th>λ</th>
<th>$B(E\lambda; 0 \rightarrow \lambda)[e^2b^\lambda]$</th>
<th>β_λ (exp)</th>
<th>β_λ (Ref. [12])</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5.15(14)</td>
<td>0.165(2)a</td>
<td>+0.164</td>
</tr>
<tr>
<td>3</td>
<td>1.10(11)</td>
<td>0.104(5)a</td>
<td>-0.112</td>
</tr>
<tr>
<td>4</td>
<td>1.08(15)</td>
<td>0.123(8)</td>
<td>+0.096</td>
</tr>
</tbody>
</table>

aSign of deformation parameter not determined experimentally.
transitions moments up to spin 18. Their extracted β_2, β_3, and β_4 deformations for 226Ra, in Table I, are in excellent agreement with theoretical calculations [12] for a stable octupole deformation.

The first evidence for ground state octupole deformation outside the At-Ru-Th region was found in 144,146Ba from studies of the prompt γ-ray from SF of 252Cf. Positive- and negative-parity bands with enhanced E1 crossing transitions were observed as shown in Fig. 2 (Ref. [5]). For completeness, while theoretical and experimental investigations of octupole deformations have focused on the Ra-Th ($Z \approx 88, N \approx 134$) and Ba-Sm ($Z \approx 56, N \approx 88$) nuclei, there exists some evidence that indicates an instability with respect to the octupole degree of freedom for $N \approx 94$ nuclei. In 162Er and 164Yb, the lowest negative-parity band is seen to be systematically depressed about 200 keV relative to the next lowest negative-parity band, and there is a lack of signature splitting in the lowest negative-parity decay sequence in the neighboring odd-N isotopes. To clarify the possibility of strong interaction between the octupole and aligned quasineutron configurations observed in the $N = 94$ erbium and ytterbium, $B(E1)/B(E2)$ branching ratios
were extracted from our 164Yb lifetime data [15]. As a result of the strong octupole band character, one might expect enhanced E1 transitions from the (-, 1)-band to the yrast band. The E1/E2 branching ratios were extracted for 162,166Yb and 164Yb and, indeed, the branching ratios in 164Yb are enhanced by more than a factor of 4 with respect to the neighboring isotopes. Furthermore, the absolute B(E1) values of 164Yb are of the order of 10^{-3} W.u. comparable to those observed in the Ba-Sm nuclei. The enhanced octupole strength for 164Yb probably is the result of the proximity of the second pair of octupole-driving orbitals; i.e. the $\Omega = 3/2$ components of the $\nu_{i13/2}$ and $\nu_{f7/2}$ states near the Fermi level for $N = 94$. However, the octupole instability in 164Yb is less pronounced than for Ba-Sm nuclei [$\pi(i_{13/2} \otimes d_{5/2})$ and $\nu(i_{13/2} \otimes f_{7/2})$] and Ra-Th nuclei [$\pi(i_{13/2} \otimes f_{7/2})$ and $\nu(j_{15/2} \otimes g_{9/2})$], where at least one set of the octupole driving orbitals both have $\Omega = 1/2$. These systematics indicate that the larger spacial localization of the $\Omega = 1/2$, high-j configurations probably is important in stabilizing the octupole shape. So, 164Yb provides an example of enhanced octupole deformation arising from the less pronounced pair of octupole-driving orbitals, i.e. $\nu(i_{13/2} \otimes f_{7/2})$ with $\Omega = 3/2$.

NEUTRON RICH NUCLEI IN THE A = 100-120 REGION

New levels were observed in 100,102Zr (independently reported in Ref. [8]), 104,106Mo, 108,110,112Ru, 112,114,116Pd and 120Cd in our first experiment [6]. Some of the level schemes are given in Table II. As reported in Refs. [7,16], Peker and Hamilton [17] analyzed the data [6] for 98Sr, 100,102Zr, $^{104-106}$Mo and $^{106-110}$Ru in terms of $\Delta E_\gamma = E_{2\gamma} - E_{1\gamma}$ vs. spin. This function is very sensitive to shape changes [18] and is a smoothly decreasing function of spin for a single band with breaks when there is a band crossing or interaction. There had been a puzzle for 98Sr and 100Zr in that, while their $2_+^+ - 0^+$ energies all indicated they were strongly deformed, their E_4/E_2 ratios were 2.99 and 2.67, respectively, considerably lower than the 3.3 predicted in a pure rotational model. These two nuclei have the lowest 0_+^+ excited states known in any nucleus, 215 and 331 keV, respectively. These excited 0_2^+ states are near spherical in nature. With the new 8^+ and 10^+ levels [6], the ΔE_γ values as shown in Fig. 3 for 102Zr, 104,106Mo, $^{106-110}$Ru and the recently discovered 104Zr (Ref. [8]) are all smoothly decreasing functions of spin (with some small fluctuations for 104Mo) to indicate a single rotational band characteristic of deformed rotors up to the highest spin observed. However, both 98Sr and 100Zr have quite different ΔE_γ patterns. Their ΔE_γ's exhibit a break at the lowest spin. This break was interpreted [17], just as for 74,76Kr (Ref. [19]) as arising from the interaction of near-spherical excited and superdeformed ground states to shift the 0_{gs}^+ down and 0_{gs}^+ up. By assuming that ΔE_γ for 100Zr and 98Sr vary in the same way at higher spins and extrapolating that variation back to low spins, we found the superdeformed ground state to be pushed down 20 and 40 keV in 98Sr and 100Zr, respectively [17]. After correcting for these shifts, the E_{4_+}/E_{2_+} ratios are 3.3 and 3.1, which are compatible with the rigid rotor value. Following our work, Mach et al. [20] analyzed all the lifetime data for the 2_+^+, 0_2^+ and 4_1^+ levels in these nuclei. They also found that the superdeformed ground states only weakly mix with the excited near-spherical 0_2^+ states. Their extracted shifts of 23.3 and 46.9 keV, for 98Sr and
100Sr, respectively, are in excellent agreement with our values [7,16] determined earlier from ΔE_γ. This close agreement demonstrates the power of ΔE_γ plots to yield detailed and quantitative information on energy level patterns, changes in structures, and shape coexistence. Similar analysis indicate perhaps only 5-10 keV shifts in 100Sr and 102Zr (see Ref. [16] for additional details and discussion of mass 70 nuclei). There remains the important question of why the excited near-spherical and superdeformed ground states which are so close in energy in 98Sr and 100Zr interact so weakly (20-50 keV shifts) when they interact so strongly (200 keV shifts) in 74,76Kr where these same two shapes are much farther apart [7,16]. It is difficult to understand these differences in interaction strengths since the origin of the superdeformation in both cases relates to the reinforcement of the N (38,60) and Z (38) shell gaps at $\beta \sim 0.4$ and possibly the same $g_{9/2}$ and $g_{7/2}$ intruder orbitals [7].

However, the 101,103Zr levels [8] provide evidence for the importance of the $h_{11/2}$ intruder orbital in the superdeformation in this region, as earlier proposed in Ref. [16]. Hotchkis et al. [8] propose that the side band in 101Zr and the ground band in 103Zr have $5/2^-$ band heads associated with the $5/2^- [532]$ intruder configuration ($\nu h_{11/2}$). These results

Figure 3. $\Delta E_\gamma = E_{\gamma 2} - E_{\gamma 1}$ as function of spin [6,8,9]
are consistent with the predictions of mean-field calculations [21-23] and correspond with predicted minima in the potential energy surfaces [22,23] at $\beta_2 \approx 0.4$. The near degeneracy of the $5/2^-$ [532] orbital with the ground state in 101Zr, they propose, suggests substantial occupancy in 100Zr of the $\Omega = 1/2$ and $3/2$ Nilsson orbitals of the $h_{11/2}$ intruder. So, in $^{102-104}$Zr they suggest there should be significant occupancy of the $\Omega = 1/2^-, 3/2^-$ and $5/2^-$ orbitals to support predictions of deformed mean field calculations that the $h_{11/2}$ orbit near the Fermi surface provides the driving force toward large deformation. This is in contrast to shell model calculations which attribute the deformation to the $g_{7/2}$ orbit with the only small occupancy of the $h_{11/2}$ orbit. Earlier, it was pointed out [24] that it is the strong down-sloping, $\nu h_{11/2}$ orbit and to a lesser extent the $\nu g_{7/2}$ orbit which should be important in driving the deformation, and that it is not clear what this does to the p-n coupling scheme interpretation [25] of the strong deformation in Zr nuclei.

Neutron Rich Nuclei in the A = 136-150 Region

Table II. Yrast gamma-ray energies of neutron-rich 104Mo to 142Ba with $A \sim (100-150)$ in prompt even-even products of 252Cf spontaneous fission. The new 142Xe data are Ref. [26] and confirmed in our work [9], and the others Ref. [6,9]. New transitions are indicated by *. The 142,144Ba data are Ref. [5] (and confirmed here). Some of the higher spin assignments are tentative.

<table>
<thead>
<tr>
<th>I^π, I_f^π</th>
<th>I_i^π</th>
<th>I_f^π</th>
<th>$I_i\pi$, $I_f\pi$</th>
<th>I^π</th>
<th>I_f^π</th>
</tr>
</thead>
<tbody>
<tr>
<td>104Mo</td>
<td>106Mo</td>
<td>108Ru</td>
<td>110Ru</td>
<td>112Ru</td>
<td>112Pd</td>
</tr>
<tr>
<td>2+</td>
<td>0+</td>
<td>242.3</td>
<td>241.8</td>
<td>237.5</td>
<td>349.0</td>
</tr>
<tr>
<td>4+</td>
<td>2+</td>
<td>369.0</td>
<td>351.1</td>
<td>423.3</td>
<td>423.2</td>
</tr>
<tr>
<td>6+</td>
<td>4+</td>
<td>519.7</td>
<td>511.6</td>
<td>576.1*</td>
<td>576.2*</td>
</tr>
<tr>
<td>8+</td>
<td>6+</td>
<td>642.7*</td>
<td>655.1*</td>
<td>702.6*</td>
<td>706.0*</td>
</tr>
<tr>
<td>10+</td>
<td>8+</td>
<td>734.1*</td>
<td>785.1*</td>
<td>815.8*</td>
<td>722.9*</td>
</tr>
<tr>
<td>120Cd</td>
<td>136Te</td>
<td>138Xe</td>
<td>140Xe</td>
<td>142Xe</td>
<td>144Ba</td>
</tr>
<tr>
<td>2+</td>
<td>0+</td>
<td>506.3</td>
<td>1134.5*</td>
<td>589.5</td>
<td>377.0</td>
</tr>
<tr>
<td>4+</td>
<td>2+</td>
<td>697.0</td>
<td>288.8*</td>
<td>484</td>
<td>458.2</td>
</tr>
<tr>
<td>6+</td>
<td>4+</td>
<td>830.4*</td>
<td>573.6*</td>
<td>482*</td>
<td>583.1*</td>
</tr>
<tr>
<td>8+</td>
<td>6+</td>
<td>925.6*</td>
<td>1697.0*</td>
<td>730.4*</td>
<td>567.3*</td>
</tr>
<tr>
<td>10+</td>
<td>8+</td>
<td>688.6*</td>
<td>608.1*</td>
<td>610.4*</td>
<td>574.0</td>
</tr>
<tr>
<td>12+</td>
<td>10+</td>
<td>599.8*</td>
<td>679*</td>
<td>671.7*</td>
<td>622.6</td>
</tr>
<tr>
<td>14+</td>
<td>12+</td>
<td>848.8*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New, higher spin states have been found in 138,140Xe, 140Ba, 146,148,150Ce, 150,152Nd and 158Sm in our HHIIRF work [6,9] and the levels in 136Te (Ref. [6]) and 142Xe (Ref. [26]) established for the first time, as shown in Table II and Fig. 6 shown later. Transitions in 149Ce also have been identified for the first time [9]. One can see from Fig. 4 the influence of the $N = 82$ spherical shell gap and the increase in deformation as a function of N and as one Z goes away from the $Z = 50$ shell gap for a given N. There are some anomalies,
however. Note for \(N = 82 \) the first excited \(2^+ \) energy for the \(N = 82 \) isotones increases as one goes away from the \(Z = 50 \) shell closure, 1280\((Z = 52)\), 1314\((54)\), 1436\((56)\) and 1596\((58)\). The \(2^+ \) energy in the \(N = 84 \) isotones shows a similar increase as \(Z \) increases from \(54 \) to \(58 \). For \(N = 86 \) the \(2^+ \) energy oscillates but is highest for \(Z = 58 \). For \(N = 88 \) the \(2^+ \) energy is again higher in \(^{146}\text{Ce} \((Z = 56) \) than in \(^{148}\text{Ba} \((56) \). Then the \(2^+ \) trend reverses for \(N = 90 \) for \(^{146}\text{Ba} \) and \(^{148}\text{Ce} \). If one looks at the moment of inertia, the \(\Delta E_\gamma \) plots or the \(\gamma \) ray energies as a function of spin, one sees some other interesting features. Note (Table II) for \(N = 84 \) there is a backbend in the moment of inertia as a function of \(h\omega \) (break in \(\Delta E \), Fig. 5) at the \(4^+ \) level for \(^{138}\text{Xe} \) and \(^{140}\text{Ba} \) to indicate some type of band crossing at low spin. Then in \(^{138}\text{Xe} \) there is a second backbend at \(10^+ \). For \(N = 86 \) there is no backbend in \(^{140}\text{Xe} \) and \(^{142}\text{Ba} \), but \(^{140}\text{Xe} \) has a backbend at \(8^+ \), but \(^{142}\text{Ba} \) does not! One also sees that while \(^{140}\text{Xe} \) starts out with slightly smaller deformation at the \(2^+ \) level than \(^{142}\text{Ba} \) (a higher \(2^+ \) energy), the levels and their depopulating transitions at \(4^+ \) and above are lesser in energy (presumably larger deformation) than those in the ground band of \(^{142}\text{Ba} \). By \(N = 88 \), \(^{144}\text{Ba} \) already looks like a good soft rotor. As already stressed recently [1], the sharp jump in deformation between \(N = 88 \) and 90 noted many years ago for \(\text{Sm, Gd and Dy isotopes is a shell gap reinforcement effect where the } Z = 64 \text{ spherical subshell gap at Gd keeps these nuclei spherical further from the } N = 82 \text{ spherical shell gap until there is a sudden change between } N = 88 \text{ and 90 for those three nuclei, just as the } N = 56 \text{ spherical shell gap is reinforced by the } Z = 40 \text{ subshell gap to keep the } \text{Sr and } \text{Zr nuclei spherical furtherl from } N = 50 \text{ until there is a sudden switch (onset of deformation) between } N = 58 \text{ and 60 in the } \text{Sr and } \text{Zr nuclei} [1]. \text{This difference also is}
Figure 5. Moments of inertia J_1 and J_2 and ΔE_γ for $^{138-142}\text{Xe}$ and $^{142-146}\text{Ba}$.
seen in laser spectroscopy measurements of the mean square charge radii where there is no sudden jump in deformation between $N = 88$ and 90 in the Ba-Ce region like there is in Sm-Dy nuclei (see Ref. [1]).

From our second 252Cf SF experiment, γ rays have been identified from states up to a record 16+ for very neutron-rich nuclei as shown in Fig. 6 where our new level schemes for 148,150Ce and 152,154Nd are given [9]. Plots of J_1 and J_2 moments of inertia are shown in Fig. 7. Note the moment of inertia plots where J_1 starts out considerably smaller for 148Ce than 150Ce, but as I increases J_1 reaches and passes J_1 for 150Ce. In 152Nd, J_1 also shows the same crossing pattern but at lower spin and less sharp but more definite crossing. The J_2 for 148Ce exhibits a striking increase at the two highest spins. As another example, the levels in 142Xe have been identified from the Argonne 248Cf SF data and have been used to test the prediction of the N_pN_n scheme [26]. Finally, as seen in Fig. 8 significant information about the spontaneous fission process itself can be gained from these studies. The fact that one sees states up to 16+ carries significant information about the necks at fission. The neck must be reasonably thick in order to impart such large angular momentum. As seen in Fig. 8, one also gains information about the relative
neutron emission channels. Note in Fig. 8 one sees transitions associated with levels from 103Zr, the 1n channel, to 98Zr (not shown), the 6n channel.

These data demonstrate that studies of the prompt γ rays from the fragments produced in SF can provide considerable important information to test our theoretical models, including the interplay of spherical and deformed shapes and single particle orbitals as a
function of spin and N and Z in addition to the fission process itself. We have just begun to look at these data theoretically in order to identify the different structures involved. There also is considerable more information including the identification of additional new isotopes in the present data sets. We are continuing our analysis. Also, heavy-ion induced fission should provide an even wider mass range of fission fragments for study. Our INEL collaborators have prepared, for the first time, a 242Pu SF source (essentially the world’s supply) which will be run at HIRIF soon. This source, with its different mass distribution, should yield additional valuable insights.

ACKNOWLEDGEMENTS

Work at Vanderbilt University and INEL are supported by the U.S. Department of Energy under grant No. DE-FG05-88ER40407 and contract No. DE-AC07-76ID01570, respectively. The work at ORNL is supported by Martin Marietta Energy Systems under contract No. DE-AC05-84OR21400 for U.S. Department of Energy. L. K. Peker is in the Nuclear Data Group at Brookhaven National Laboratory. Part of the analysis was done by S. Zhu at Tsinghua University.
REFERENCES

17. L. K. Peker and J. H. Hamilton, private communication to Ref. [7].