Comparative study of ferromagnetic superconductors
(Ru$_{1-x}$Nb$_x$Sr$_2$Eu$_{1.4}$Ce$_{0.6}$Cu$_2$O$_{10-\delta}$) by different preparation methods

M.E. Botello-Zubiate, C. Santillán, O.E. Ayala-Valenzuela, and J.A. Matute-Aquino
Centro de Investigación en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, 31109, México.

M. Jaime
National High Magnetic Field Laboratory MS-E536, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Recibido el 26 de agosto de 2008; aceptado el 8 de diciembre de 2008

Polycrystalline ferromagnetic superconducting samples of rutheno-cuprates with chemical formula Ru$_{1-x}$Nb$_x$Sr$_2$Eu$_{1.4}$Ce$_{0.6}$Cu$_2$O$_{10-\delta}$ (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) were prepared by two different routes. An almost pure Ru-1222 type phase with a small amount of the Ru-2116 or Ru-1212 phases in some of the samples were determined. Randomly oriented particles in laminates form with a length and width of a few micrometers together with agglomerates were observed. Particle size distributions, average particle sizes, porosity and final density depend on the processing route. Critical magnetic fields, intra- and inter-grain transition temperatures are functions of sample composition and processing route.

Keywords: Ferromagnetic superconductors; resistance; critical magnetic field.

Se prepararon muestras superconductoras ferromagnéticas polícristalinas con fórmula química Ru$_{1-x}$Nb$_x$Sr$_2$Eu$_{1.4}$Ce$_{0.6}$Cu$_2$O$_{10-\delta}$ (x = 0, 0.2, 0.4, 0.6, 0.8 y 1) por dos rutas diferentes. Se determinó la presencia de la fase tipo Ru-1222 casi pura, con una pequeña cantidad de las fases Ru-2116 o Ru-1212 en algunas muestras. Se observaron partículas en forma de láminas orientadas al azar con un ancho y largo de unas pocas micras, junto con aglomerados. La distribución de tamaño de partículas, el tamaño de partícula promedio, la porosidad y la densidad final dependen de la ruta de procesamiento. Los campos magnéticos críticos y las temperaturas de transición intra- e inter-grano son funciones de la composición y de la ruta de procesamiento.

Descriptors: Superconductores ferromagnéticos; resistencia; campo magnético crítico.

PACS: 07.55.Db; 07.85.Nc; 07.55.-w.

1. Introduction

Since the discovery of the ferromagnetic and superconducting rutheno-cuprates RuSr$_2$RCu$_2$O$_8$ (Ru-1212) and RuSr$_2$(RCe)$_2$Cu$_2$O$_{10-\delta}$ (Ru-1222) where R = Gd or Eu numerous studies have been made to clarify the origin of the magnetic ordering without reaching a definitive conclusion [1,2,3]. The Ru-1222 type rutheno-cuprates with formula (Ru$_{1-x}$Nb$_x$)Sr$_2$Eu$_{1.4}$Ce$_{0.6}$Cu$_2$O$_{10-\delta}$, with a strong bidimensional character in their crystalline structure and with competitive ferromagnetic and antiferromagnetic interactions, is an ideal system to study the origin of the magnetic and superconducting ordering mechanisms. It is so because the dilution of the spin system, with the addition of Nb$^{+5}$ ion, which does not has magnetic moment and has a radio similar to Ru$^{+5}$, would allow us to study in detail how the gradual coupling process between the magnetic moments occurs. Additionally, the total substitution of Nb by Ru (Nb-1222) maintains the crystal structure and conserves the superconductivity. Here we present a comparative study of the influence of different processing routes (agate mortar milling -series 1- against planetary ball milling-series 2-) on the phase composition, microstructure and magneto-transport properties.

2. Experimental

2.1. Processing

Nominal compositions were prepared starting from high purity oxide powders (≥ 90.9%) of RuO$_2$, Nb$_2$O$_3$, Eu$_2$O$_3$, CeO$_2$, SrCO$_3$ and CuO, previously dried at 100°C during 24 hours. The starting oxides were meticulously mixed and milled in an agate mortar (series 1) and using a planetary ball mill (serie 2) and then they were calcined in a three steps heat treatment procedure: 24 hours at 1000, 1020 and 1040°C respectively, with intermediate millings between heat treatments and using heating and cooling rates of 5 and 3°C/min respectively. Finally, the samples were synthesized at 1075°C during 24 hours under oxygen atmosphere with heating and cooling ramps of 3 and 0.5°C/min respectively [3,4]

2.2. Characterization

The X-ray diffraction patterns were measured at room temperature in a Phillips diffractometer model X’pert MPD with Cu-K$_\alpha$ radiation ($\lambda = 1.5406$ Å) and with an angular step of
0.02° in an angular interval from 20 to 120°. The X-ray diffraction patterns were refined by the Rietveld method using the Fullproof program [5] for the determination of phases composition, lattice parameters and others crystallographic parameters. The microstructure was observed in scanning electron microscopes JEOL model JSM-5800 LV and JEOL model JSM-7401F and chemical elemental analysis was carried out with energy-dispersive systems EDAX S60/DX90 and Oxford 350X. The particle size was determined with a Mastersizer light scattering analyzer and with scanning electron microscopy. Resistance vs Temperature curves for different applied magnetic fields were measured in a Quantum Design Physical Properties Measurement System.

3. Results and discussion

Figure 1 shows the evolution of phase formation for the sample x=0 (series 1) after the three intermediate heat treatments and final sintering followed by the changes of the X-ray diffraction patterns. It can be observed a intensity diminution of some peaks (for example at 2θ=38.8° and 28.8°) and a intensity increase in some other peaks (for example at 2θ=30.7, 41.8, 44.3 and 54.6°) as the three heat treatments are realized. The X-ray diffraction pattern after sintering at 1075°C during 24 hours shows well-defined peaks corresponding to the Ru-1222 phase completely formed.

Figure 2 shows the Rietveld refinement of the X-ray diffraction pattern corresponding to the x =.2 sample (series 1). For all compositions of this series the Rietveld refinement was carried out for the tetragonal Ru-1222 type structure (space group I4/mmm) as the main crystallographic phase, for the composition with x=0 we obtained small amounts of the Ru-2116 type phase (group P21/n) and Ru-1212 type phase (P4/mbm) For the samples with x= 0.2 to x=0.8 only we obtained small amounts of the Ru-2116 type phase (∼2-5%). The lattice parameters obtained for the sample with x=0 were a=3.835 Å and c=28.500 Å, this lattice parameters increase with addition of Nb,

![Figure 1](image1.png)
Figure 1. XRD patterns after intermediate heat treatments and final sintering of RuSr$_2$Eu$_{1.4}$Ce$_{0.6}$Cu$_2$O$_{10-δ}$.

![Figure 2](image2.png)
Figure 2. Rietveld refinement of the X-ray diffraction pattern corresponding to the x=0.2 sample.

![Figure 3](image3.png)
Figure 3. Scanning electron microscopy images of the samples RuSr$_2$Eu$_{1.4}$Ce$_{0.6}$Cu$_2$O$_{10}$ of the series 1 (Fig. 3a) and series 2 (Fig. 3b).
Table I. Critical superconducting temperatures for composition x=0, series 1 and 2.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Series 1</th>
<th>Series 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition (x)</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>Onset transition temperature (K) (T_{onset})</td>
<td>46</td>
<td>43</td>
</tr>
<tr>
<td>Intra-grain transition temperature (K) (T_{1})</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td>Inter-grain transition temperature (K) (T_{2})</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>R=0 Ω transition temperature (K) (T_{R=0})</td>
<td>30</td>
<td>26</td>
</tr>
</tbody>
</table>

which is in correspondence with the higher ionic radio of Nb (r^{ionic}_{Nb}=0.64 Å), these results are in agreement with previous data [6].

Figure 3a and 3b show scanning electron microscopy images of the samples RuSr_{2}Eu_{1-x}Ce_{x}Cu_{2}O_{10} for the series 1 and 2 respectively. Particles in laminates form are observed randomly oriented with a size between 2-3 µm, together with agglomerates and some porosity. The porosity is greater for series 1 than for series 2, which is in correspondence with a higher calculated density for series 2. After sintering the final average density were 75.5 g/cm³ and 85.2 g/cm³ for the series 1 and series 2 respectively. A similar morphology was observed in all compositions of the series.

Volume percent versus particle size shows three-modal and bi-modal distributions for series 1 (Fig. a) and series 2 (Fig. b).

From the electrical resistance versus temperature curves for different static applied magnetic fields four different critical temperatures could be determined: the onset transition temperature T_{onset}, the intra-grain transition temperature T_{1}, the inter-grain transition temperature T_{2} and the R=0 Ω transition temperature T_{R=0}. The onset transition temperature is the higher temperature when the resistance begins to fall during the superconducting transition, the intra-grain (inter-grain) transition temperature is the temperature associated to the establishment of the superconducting state inside the grains (in the grain boundaries) and the R=0 Ω transition temperature is the temperature associated to the establishment of the superconducting state in the whole material.

Table I show the different critical temperatures for composition x=0, 0.4, 0.6 and 1. From this table one can observe higher critical temperatures for series 1 than for series 2. Additionally, for series 2 only one maximum in the derivatives could be determined.

For series 1 with compositions x=0.4 and 0.6 the onset transition temperatures are 43 and 38 K and they reach zero resistance at 26 and 27 K respectively. For composition x=1 of this series one can observes an important diminution of the onset temperature to 6K but it does not reach the zero resistance condition even for the lowest measured temperature. On the other side, for series 2 with compositions x=0.4, 0.6 and 1 the resistance R=0 Ω was only obtained for applied magnetic fields until 5 T. Additionally, for series 2 only one maximum in the derivatives could be determined.
4. Conclusions

The Ru$_{1-x}$Nb$_x$Sr$_2$Eu$_{1.4}$Ce$_{0.6}$Cu$_2$O$_{10-\delta}$($x = 0, 0.2, 0.4, 0.6, 0.8$ and $1)$ system prepared by agate mortar (series 1) and planetary ball mill (series 2) show an almost pure Ru-1222 type phase with small amounts of Ru-2116 or Ru-1212 phases. A microstructure of randomly oriented particles in laminares form with a length and width of a few micrometers together with agglomerates was determined. Series 2 has smaller porosity, higher density, smaller average particle size and narrower particle size distribution than series 1. However, series 1 has higher critical temperatures than series 2. Lower limits of 15, 9 and 5 T for critical magnetic fields as well as onset temperatures, intra- and inter-grain temperatures and zero resistance temperatures were determined for different compositions in both series.

Acknowledgment

The authors (MEB, JMA) would like to thank the NHMFL for its help in PPMS measurements (series 1) and CONACyT by its support to this work (CONACyT Project 60687: Superconductividad y ferromagnetismo en las cerámicas que contienen rutenio: origen de la frustración magnética en un sistema de baja dimensionalidad).

5. Rodriguez-Carvajal, FULLPROOF: A Rietveld refinement and pattern matching analysis program On line.