Continuous-wave diode-pumped Nd:YVO$_4$ holographic laser oscillator

E. Rosas,* M. Trew, G.J. Crofts, and M.J. Dalziel

*The Blackett Laboratory, Imperial College, London SW7 2BZ

J.J. Soto-Bernal

Laboratorio de Láseres, Centro de Investigaciones en Óptica, A.C.
Apartado postal 1-948, 37000 León, Gto., Mexico

Recibido el 7 de julio de 2000; aceptado el 29 de noviembre de 2000

We present the use of the gain grating technique in the construction of a continuous-wave diode-pumped Nd:YVO$_4$ holographic laser oscillator. The oscillator was able to produce a small signal gain of $\approx 7 \times 10^7$ and a relatively circular TEM$_{00}$ spatial mode with an output power of $\approx 5.7$ W.

Keywords: Nd:YVO$_4$; diode-pumped lasers; adaptive oscillators; optical phase conjugation

Presentamos la aplicación de la técnica de rejillas de ganancia en la construcción de un oscillator láser holográfico de Nd:YVO$_4$ de onda continua bombeado por diodos. El oscillator fue capaz de producir una ganancia de pequeña señal de $\approx 7 \times 10^7$ y un modo espacial TEM$_{00}$ relativamente circular con $\approx 5.7$ W de salida.

Descriptores: Nd:YVO$_4$; láseres bombeados por diodos; osciladores adaptivos; conjugación de fase óptica

PACS: 42.65.Hw; 42.60.Pk; 42.55.Xi

1. Introduction

Nowadays good spatial quality and high-power beams are needed for laser systems to fulfill the requirements of many applications; however the main problem of the high-power laser systems is the heating of its active medium caused by the high pumping powers used. In the high-power solid-state laser systems this heating causes phase distortions as well as depolarization [1]. As a solution to this problem, the optical phase conjugation technique (OPC) [2] has been used in order to correct for intracavity phase distortions by means of the generation of dynamic gain gratings in the active medium [3]. This nonlinear technique has been applied in the construction of several self-adaptive pulsed solid-state laser systems like flash-lamp pumped Nd:YAG lasers [4], diode-pumped Neodymium: Yttrium Orthovanadate (Nd:YVO$_4$) lasers [5], and lasers-pumped Ti:sapphire lasers [6].

The self-adaptive lasers are constructed by using the four-wave mixing OPC technique in order to induce the formation of a gain grating in an active medium. The gain grating is produced by the gain saturation in the amplifier laser medium obtained through the interference of two coherent intersecting beams. In this way, the self-adaptive laser is created via the diffraction produced by the gain grating when the amplifier medium is located in a self-intersecting geometry, see Fig. 1. This gain grating is a volume hologram that codifies the distortions from the oscillator loop, including those caused by the amplifier medium itself, and in this way allows the correction of the phase distortions. Because in the self-adaptive laser systems the formation of the loop oscillator is achieved by the creation of a volume hologram resulting from the induced gain grating, those lasers have been referred to as holographic laser oscillators (HLO) [7].

Although the high-gain requirements of this technique made its implementation to continuous-wave lasers to be more difficult to achieve, recently it has been shown that it is possible to obtain an efficient OPC in a continuous-wave side-pumped laser amplifier used in a four-wave mixing configuration [8]. Here we report on the application of the gain grating technique to the construction of a continuous-wave diode-pumped Nd:YVO$_4$ HLO.

2. The experimental holographic laser oscillator

In the self-intersecting configuration shown in Fig. 1 an injected beam propagating in the anti-clockwise direction passes through the amplifier and is redirected to self-intersect in the amplifier again. The interference pattern generated by this self-intersection of the injected beam in the amplifier pro-
roduces the modulation of the population inversion inside the active medium. This modulation forms a volume gain grating which keeps information of any phase distortion suffered by the injected beam along its whole propagation in the closed loop oscillator, which is formed by the Bragg-matched diffraction of the gain grating light. This allows the oscillation of the light in the opposite direction to the injected beam, the clockwise direction in Fig. 1, when the loop gain reaches its threshold level.

The non-reciprocal transmission element (NRTE), formed by a half-wave plate and a Faraday rotator located between a pair of polarizers, increases the operation efficiency since it maximizes the gain grating modulation and allows the unidirectional oscillation in the clockwise direction due to its different transmissions for the anti-clockwise and clockwise directions [9]. The laser radiation propagating in the clockwise direction can form a self-consistent spatial mode which is the spatial phase conjugate of the injected beam [10]. This conjugated beam effectively corrects for the aberrations inside the loop oscillator and maintains the high spatial quality of the output beam [7].

In the experimental HLO shown in Fig. 1; the used amplifier was a Nd:YVO₄ crystal at 1.1 atm \% with dimensions of (20 mm × 5 mm × 1 mm). The (5 mm × 1 mm) surfaces were anti-reflection coated for the lasing wavelength, 1064 nm; and the pump surface, the (20 mm × 1 mm) surface, was anti-reflection coated for the pumping wavelength, 808 nm. The self-lasing inside the crystal was highly suppressed by cutting the (5 mm × 1 mm) surfaces of the crystal at an angle of \( \approx 2° \) with respect to the normal of the pumped surface.

The pumping source was a 25 W continuous-wave fast-diverging axis collimated diode bar, which was focused in the Nd:YVO₄ crystal by a cylinder lens with focal length of 12.7 mm. Due to the birefringence of the Nd:YVO₄, the polarization of the light emitted by the pumping diode had to be rotated by means of a half-wave plate to be parallel to the \( e \)-axis of the crystal in order to access its high absorption cross section for the pumping wavelength [11].

When the Nd:YVO₄ amplifier is pumped, the non-uniform exponential decay of the gain region in function of the deep inside the crystal can be highly compensated by angling the beam being amplified. The inclined incidence on the amplifier allows the beam being amplified to experience a total internal reflection in the pumped surface of the crystal. This total internal reflection allows the averaging of the transverse gain variation along the spatial profile of the beam being amplified. Such a configuration, known as bouncing geometry, provides with the high gain needed to obtain an efficient operation of the HLO [11]; and it has been shown that the observed small signal gain is a function of the total internal reflection angle of the beam being amplified [12]. Because the gain region is narrow in the transverse plane, in order to access it, it was necessary to use 10 cm focal length spherical focusing and recollimating lenses at each side of the amplifier.

The highest output power obtained for the experimental HLO was \( \approx 5.7 \) W with an internal incidence angle of \( \approx 2° \) with respect to the pumped surface; a separation angle between the self-intersected beams of \( \approx 1° \); and an injection power of \( \approx 25.5 \) mW. Figure 3 shows the output TEM₀₀ spatial mode for the maximum obtained output power, which is elliptical due to the asymmetry of the gain region. This output beam was extracted from the HLO by means of an optical isolator located between the HLO and the injection laser. The self-

**Figure 2.** Transmission of the HLO as a function of the NRTE wave-plate angle.

The right orientation of the NRTE half-wave plate allows the reduction of its transmission in the anti-clockwise direction (injected beam) in order to optimize the gain grating formation, while this transmission for the clockwise direction (output beam) is increased in order to produce an efficient laser oscillation. The HLO anti-clockwise transmission, \( T₋ \), was directly measured by varying the NRTE transmission (\( \theta \)); then by adjusting this angle to allow the maximum anti-clockwise transmission \( (\theta = 45°) \) it was possible to determine \( T₀ = 56.8\% \) in

\[
T₋ = T₀ \sin^2 2\theta,
\]

therefore the HLO clockwise transmission, \( T₊ \), could be calculated using

\[
T₊ = T₀ \cos^2 2\theta,
\]

and is shown together with the HLO anti-clockwise transmission in Fig. 2 as a function of the NRTE half-wave plate angle.

The injection source for the HLO was an external continuous-wave Nd:YVO₄ laser which spectral characteristics of single-mode and frequency were inherited to the HLO output beam. This injection laser was also used to measure the single pass gain of the amplifier.

### 3. Results and discussion

The highest output power obtained for the experimental HLO was \( \approx 5.7 \) W with an internal incidence angle of \( \approx 2° \) with respect to the pumped surface; a separation angle between the self-intersected beams of \( \approx 1° \); and an injection power of \( \approx 25.5 \) mW. Figure 3 shows the output TEM₀₀ spatial mode for the maximum obtained output power, which is elliptical due to the asymmetry of the gain region. This output beam was extracted from the HLO by means of an optical isolator located between the HLO and the injection laser. The self-
adaptive capability of the oscillator became evident since the HLO was able to produce such an spatial high quality mode like the one shown in Fig. 3.

In Fig. 4, we show the experimental measurements of the output power of the HLO as a function of the injection beam input power, for an anti-clockwise NRTE transmission of \( \approx 1.5\% \). In this Fig. 4 it is possible to observe that there exists an optimum injection beam power for a given small signal gain of the amplifier.

Measurements of the oscillating beam in the plane of the first focusing lens, the left-hand side lens in Fig. 1, showed spot sizes of \( w_{x_0} = 35 \mu m \) and \( w_{y_0} = 30 \mu m \) for the horizontal and the vertical axes, respectively. With those spot sizes measurements at the focusing lens plane, it was possible to estimate the focused beam spot sizes the oscillating beam will have at some point near the centre of the amplifier, \( w_{x_0} \) and \( w_{y_0} \), using [13]

\[
\frac{w_{x_0}, y_0}{\lambda} = \frac{f \lambda}{\pi w_{x_1}, y_1},
\]

where \( f = 10 \text{ cm} \) is the focal length of the focusing lens and \( \lambda = 1.064 \times 10^{-4} \text{ cm} \) is the oscillating beam wavelength. Therefore, the focused beam horizontal and vertical spot sizes resulted to be \( w_{x_0} \approx 93 \mu m \) and \( w_{y_0} \approx 108 \mu m \), and those calculations allowed us to approximate the focused beam transverse area as \( A = \pi w_{x_0} w_{y_0} \approx 3.15 \times 10^{-4} \text{ cm}^2 \).

This estimation of the focused beam transverse area was used together with the maximum measured output power, \( P_{out} \approx 5.7 \text{ W} \), in equation

\[
I_{sat} = \frac{P_{out}}{A},
\]

in order to calculate the stored intensity as \( I_{sat} \approx 18 \text{ kW/cm}^2 \); which then could be used to obtain the value of the Nd:YVO\(_4\) absorption coefficient-length product, \( \alpha_0 L \), from relation

\[
I_{sat} \approx 2 \alpha_0 L I_{sat},
\]

where \( I_{sat} \approx 1 \text{ kW/cm}^2 \) is the saturation intensity of the Nd:YVO\(_4\).

Finally, this value of \( \alpha_0 L \) was used in order to estimate a small signal gain coefficient from

\[
G_0 = \exp (2 \alpha_0 L),
\]

which resulted to be \( G_0 \approx \exp (18) = 7 \times 10^7 \); being consistent with our experimental measurements for the single pass gain and the phase-conjugate reflectivity shown in Figs. 5 and 6, respectively, after considering that some recombination processes take place in the Nd:YVO\(_4\) amplifier. Perhaps the most important of those being the Auger upconversion recombination process [14]. A simple theoretical model was used to show the Auger upconversion recombination process effect in the small signal gain of the oscillator and the results are also shown in Fig. 5.
4. Conclusions

As a conclusion, we have applied the gain grating technique to the construction of a continuous-wave diode-pumped injected holographic laser oscillator. The system provided an output power of up to \( \approx 5.7 \) W in a single longitudinal mode with the same frequency as that from the injected beam. The self-adaptive capability of the oscillator became evident since it was able to correct for the heat induced phase distortions in the amplifier and produce a high spatial quality TEM\(_{00}\) output mode.

Acknowledgments

E. Rosas wishes to thank the support of the CONACyT (México) through grant No. 990 139, as well as to the Non-linear Optics Group of LASP at the Imperial College; and J.J. Soto-Bernal gratefully acknowledges the support from the Centro de Investigaciones en Óptica, A.C.

\* Present address: Laboratorio de Optoelectrónica, Instituto Tecnológico de Toluca, Av. Tecnológico, 52140 Metepec, Mexico. e-mail: erosas@ittoluca.edu.mx.

Interruptores ópticos basados en reflexión interna total de solitones espaciales en interfaces no lineales saturables

Departamento de Electrónica, Facultad de Ingeniería Mecánica Eléctrica y Electrónica, Universidad de Guanajuato
Apartado postal 215-A, 36730 Salamanca, Gto., Mexico

J.J. Sánchez-Mondragón
Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos
62210 Cuernavaca, Mor., Mexico

G. Flores-Alvarado
Preparatoria Federal por Cooperación Domingo Arenas
Tepepetla, Tlax., Mexico

Recibido el 13 de febrero de 2001; aceptado el 23 de febrero de 2001

Estudiamos la reflexión de un solitón espacial unidimensional en una interfase formada por un medio no lineal saturable y un medio lineal. Nuestros estudios hacen énfasis en determinar las condiciones físicas bajo las cuales el haz reflejado por la interfase no lineal sigue siendo solitón. Encontramos tres regiones críticas para un solitón espacial en la interfase, dependiendo del valor que tome el ángulo de incidencia. Así mismo observamos corrimiento Goos-Hänchen no lineal que es determinante para la conservación del ángulo de reflexión. Finalmente, presentamos resultados preliminares experimentales en SBN61:Ce de la reflexión interna total de un haz unidimensional.

Descriptores: Autoenfocamiento; solitones espaciales; materiales fotorrefractivos

We study the reflection of one-dimensional spatial soliton at the nonlinear interface between a saturable type medium and linear medium. Our study makes emphasis on determining the physical conditions under which the beam reflected by the interface is still a spatial soliton. Depended the incidence angle we find three critical regions for spatial solitons in the interface. We observed nonlinear Goos-Hänchen shift is determined if reflection angle are conserved. Finally, we present preliminary experimental results in SBN61:Ce of the total internal reflection of one dimensional beam.

Keywords: Self-focusing effect; spatial solitons; photorefractive materials

PACS: 42.65.Jx; 42.79.Gn

1. Introducción

El estudio de la incidencia de un haz de luz en una interfase formada por dos medios de diferente índice de refracción, es un problema fascinante desde el punto de vista físico. Reflexión interna total, ángulo de incidencia igual a ángulo de reflexión, corrimiento Goos-Hänchen, son algunos ejemplos de fenómenos físicos asociados al problema de reflexión en interfases lineales [1–6]. El estudio de la reflexión interna total en interfases no lineales tipo Kerr, fue estudiado teóricamente por Aceves et al. [7–9], en donde encontraron toda una gama de nuevos fenómenos, tales como biestabilidad óptica (rompimiento de un haz en haces múltiples), estabilidad por medio del tratamiento del haz como partícula, etc. Experimentalmente estos resultados han sido estudiados en líquidos no lineales, dando origen a la creación de un nuevo elemento óptico no lineal basado en la reflexión interna total de un haz de luz en una interfase no lineal: el interruptor óptico [10]. Sin embargo, poca atención se le había dado al haz reflejado en el fenómeno de reflexión, y no había sido determinado si seguía conservándose como solitón en una interfase no lineal tipo Kerr. Estudios posteriores encontraron que sólo bajo ciertas condiciones, se conservaba la forma y perfil del solitón para una no linealidad Kerr, y no sólo eso, sino que a medida que la cantidad de energía reflejada era cada vez menor, entonces el ángulo de reflexión no se conservaba con respecto al de incidencia [11]. Por otra parte, la búsqueda de nuevos materiales (cris tales fotorrefractivos, absorbentes orgánicos e inorgánicos, etc.) ha dado origen a no linealidades como las llamadas saturables, que son de enorme interés práctico, pues permitiría la creación de nuevos interruptores ópticos. En particular, los cristales fotorrefractivos presentan este tipo de no linealidad, mediante una adecuada elección tanto del coeficiente como del parámetro de saturación.

El propósito de este trabajo es encontrar numéricamente, las condiciones adecuadas para obtener reflexión interna total en interfases no lineales saturables, y determinar cuando el haz reflejado sigue siendo solitón. Para ello, en primer lugar determinaremos numéricamente el perfil del haz que se propaga en medios no lineales saturables. Posteriormente, este haz se hará incidir a una interfase formada por un medio no lineal saturable y otro lineal. Al mismo tiempo encontraremos cuáles son las condiciones para tener corrimiento Goos-Hänchen, y si existe o no conservación del ángulo de incidencia-