Doubly cabibbo-suppressed D decays at BESIII
DOI:
https://doi.org/10.31349/SuplRevMexFis.3.0308048Keywords:
charm physics, hadronic decays, CP violation, Branching fractions, BESIIIAbstract
BESIII reports the first observation of the doubly Cabibbo-Suppressed decay D + → K+π +π −π 0 and the first evidence for D + → K+ω using an e +e − collision data sample corresponding to an integrated luminosity of 2.93 fb−1 taken at a center-of-mass energy of 3.773 GeV. The ratio of the branching fractions of D + → K+π +π −π 0 over D + → K−π +π +π 0 is significantly larger than other doubly CabibboSuppressed decays in the charm sector. The CP asymmetry in the separated charge-conjugate branching fractions for D + → K+π +π −π 0 is determined and no evidence of CP violation is found. An independent measurement of D + → K+π +π −π 0 with semileptonic tags is also reported.
References
P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020 (2020) 083C01. https://academic.oup.com/ptep/article/2020/8/083C01/5891211
H. J. Lipkin, Nucl. Phys. Suppl. 115 (2003) 117. https://www.sciencedirect.com/science/article/pii/S0920563202019655?via%3Dihub
H. Y. Cheng and C. W. Chiang, Phys. Rev. D 81 (2010) 074021. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.81.074021
Q. Qin, H. N. Li, C. D. Lu, and F. S. Yu, ¨ Phys. Rev. D 89 (2014) 054006. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.054006.
H. Y. Cheng, C. W. Chiang, and A. L. Kuo, Phys. Rev. D 93 (2016) 114010. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.114010.
Y. Grossman and D. J. Robinson, J. High Energy Phys. 1304 (2013) 067. https://doi.org/10.1007/JHEP04(2013)067.
H. N. Li, C. D. Lu, and F. S. Yu, ¨ Phys. Rev. D 86 (2012) 036012. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.86.036012
M. Saur and F. S. Yu, arXiv:2002.12088. https://arxiv. org/abs/2002.12088
M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973) 652. https://academic.oup.com/ptp/article/49/2/652/1858101
H. Y. Cheng and C. W. Chiang, Phys. Rev. D 86 (2012) 014014. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.86.014014
S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Meth. A 506 (2003) 250. https://doi.org/10.1016/S0168-9002(03)01368-8
M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 121 (2018) 171803. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.171803
M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 123 (2019) 231801. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.231801
M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 97 (2018) 072004. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.072004
This contribution is calculated by P3 R=1 £ B(D + → K+R) · B(R → π +π −π 0 ) ¤ , where R sums over η, ω, and φ, B(D + → K+ω) is obtained in this work, and the other BFs are quoted from the PDG [1].
F. S. Yu, X. X. Wang, and C. D. Lu,¨ Phys. Rev. D 84 (2011) 074019. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.84.074019
Z. Z. Xing, Phys. Rev. D 55 (1997) 196. https://journals.aps.org/prd/abstract/10.1103/ PhysRevD.55.196
J. Libby et al. Phys. Lett. B 731 (2014) 197. https://www.sciencedirect.com/science/article/pii/S0370269314001233?via%3Dihub
M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 42 (2018) 083001. https://iopscience.iop.org/article/10.1088/1674-1137/42/8/083001 20. M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 44 (2020) 040001. https://doi.org/10.1088/1674-1137/44/4/040001.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Xiang Pan (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Suplemento de la Revista Mexicana de Física right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.