The structure of cosmic strings of a U(1) gauge field for the conservation of B - L


  • Victor Muñoz-Vitelly Instituto ce Ciencias Nucleares, UNAM
  • José Antonio García-Hernández Insituto de Ciencias Nucleares, UNAM
  • Wolfgang Bietenholz Instituto de Ciencias Nucleares, UNAM



Cosmic strings, baryon and lepton number, non-standard Higgs field


We consider an extension of the Standard Model, where the difference between the baryon number $B$ and the lepton number $L$ is gauged with an Abelian gauge field, in order to explain the exact conservation of $B-L$. To avoid a gauge anomaly, we add a right-handed neutrino $\nu_{\rm R}$ to each fermion generation. Here it is not sterile, so the usual Majorana term is excluded by gauge invariance. We provide a mass term for $\nu_{\rm R}$ by adding a non-standard 1-component Higgs field, thus arriving at a consistent extension of the Standard Model, where the conservation of $B-L$ is natural, with a modest number of additional fields. We study the possible formation of cosmic strings by solving the coupled field equations of the two Higgs fields and the non-standard U(1) gauge field. Numerical methods provide the corresponding
string profiles, depending on the Higgs winding numbers, such that the appropriate boundary conditions in the string center and far from it are fulfilled.


H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Ann. Phys. (NY) 93 (1975) 193,

W. Buchmüller, C. Greub and P. Minkowski, Neutrino masses, neutral vector bosons and the scale of B − L breaking, Phys. Lett. B 267 (1991) 395,

H. Weigel, M. Quandt and N. Graham, Stable charged cosmic strings, Phys. Rev. Lett. 106 (2011) 101601,

V. Muñoz-Vitelly, The structure of cosmic strings for a U(1) gauge field related to the conservation of the baryon-number minus lepton-number, M.Sc. thesis, Universidad Nacional Autónoma de México, in preparation.

N. Kopnin, Theory of Nonequilibrium Superconductivity, Oxford University Press, 2001. A. A. Abrikosov, Type II Superconductors and the vortex lattice, Nobel Lecture, 2003,

T. W. K. Kibble, Topology of cosmic domains and strings, J. Phys. A: Math. Gen. 9 (1976) 1387,

T. Charnock, A. Avgoustidis, E. J. Copeland and A. Moss, CMB constraints on cosmic strings and superstrings, Phys. Rev. D 93 (2016) 123503,

B. P. Abbott et al. (LIGO and Virgo Collaborations), Constraints on cosmic strings using data from the first Advanced LIGO observing run, Phys. Rev. D 97 (2018) 102002,

R. H. Brandenberger, A.-C. Davis and M. Trodden, Cosmic strings and electroweak baryogenesis, Phys. Lett. B 335 (1994) 123,

M. James, L. Perivolaropoulos and T. Vachaspati, Detailed stability analysis of electroweak strings, Nucl. Phys. B 395 (1993) 534,

E. Witten, Superconducting Strings, Nucl. Phys. B 249 (1985) 557, J. P. Ostriker, A. C. Thompson and E. Witten, Cosmological Effects of Superconducting Strings, Phys. Lett. B 180 (1986) 231,

M. B. Hindmarsh and T. W. B. Kibble, Cosmic Strings, Rep. Prog. Phys. 58 (1995) 477,

A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects, Cambridge University Press, 2000.

J. A. Garc´ıa-Hernandez, The profile of non-standard cosmic strings, M.Sc. thesis, Universidad Nacional Autónoma de México, in preparation




How to Cite

Muñoz-Vitelly V, García-Hernández JA, Bietenholz W. The structure of cosmic strings of a U(1) gauge field for the conservation of B - L. Supl. Rev. Mex. Fis. [Internet]. 2022 Apr. 5 [cited 2022 Dec. 3];3(2):020713 1-7. Available from: