n-order perturbative solution of the inhomogeneous wave equation
Keywords:
Inhomogeneous media, perturbation theory, wave propagationAbstract
The exact solution of the inhomogeneous wave equation in one dimension, when the square of the velocity is a linear function of the position, can be written in terms of Bessel functions of the first kind. We use this solution as the zero order approximation for a perturbation expansion and apply it to the case when the square of the velocity can be written as a polynomial in the position. The first and second order perturbation terms, corresponding to quadratic and cubic terms for the square of the velocity, are obtained. A closed formula for the $n$-order correction in terms of integrals of the Bessel functions of the first kind was also explicitly obtained, this expression can be solved analytically for the first and second order corrections and numerically for higher terms.Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Revista Mexicana de Física E
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.