Harmonic oscillator position eigenstates via application of an operator on the vacuum
Keywords:
Position eigenstates, harmonic oscillator, squeezed states, minimum uncertainty states, squeeze operatorAbstract
Harmonic oscillator squeezed states are states of minimum uncertainty, but unlike coherent states, in which the uncertainty in position and momentum are equal, squeezed states have the uncertainty reduced, either in position or in momentum, while still minimizing the uncertainty principle. It seems that this property of squeezed states would allow to obtain the position eigenstates as a limiting case, by doing null the uncertainty in position and infinite in momentum. However, there are two equivalent ways to define squeezed states, that lead to different expressions for the limiting states. In this work, we analyze both definitions and show the advantages and disadvantages of using them in order to find position eigenstates. With this in mind, but leaving aside the definitions of squeezed states, we find an operator that applied to the vacuum gives position eigenstates. We also analyze some properties of the squeezed states, based on the new expressions obtained for the eigenstates of the position.Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Revista Mexicana de Física E
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.