Reconstruyendo la diferencia de camino ´optico de un interferograma real degradado por ruido mediante la soluci´on de diferentes problemas de optimizaci´on
DOI:
https://doi.org/10.31349/RevMexFisE.18.020207Keywords:
Reconstrucción numérica, problemas inversos, optimización estocástica, experimentos de demostración para estudiantes no graduados, estudiantes no graduados de ciencias e ingeniería.Abstract
This paper presents a comparative numerical study that demonstrates the feasibility of stochastic optimization (SO) for reconstructing the optical path difference (OPD) from a real interferogram degraded by noise, either by the maximization of the correlation coefficient or by the minimization of the Euclidean distance where the optimization achieved for each objective function corresponds to the near-optimal solution without being dominated by a local optimum. In order to show the efficacy of different SO algorithms based on evolutionary computation, we propose a solution to the maximization problem by using a genetic algorithm with the primary aberrations described by Kingslake, while for the solution of the minimization problem an evolutionary strategy with Zernike polynomials is proposed. The numerical results show the simplicity, robustness, and accuracy of both SO algorithms to calculate their corresponding aberration coefficients. Thus, this work offers an ideal opportunity to integrate the skills acquired by university students of science and engineering in subjects such as interferometric optical metrology, numerical methods, and programming with the purpose of performing interferogram analysis.
References
J. J. Briers, Opt. Lasers Eng. 32 (1999) 111-138.
D. Malacara, M. Servin y Z. Malacara, Interferogram Analysis for Optical Testing, 2 Ed., CRC Press, Boca Raton, FL., (2005), pp. 1-62.
D. Malacara, J. M. Carpio y J. J. Sánchez, Opt. Eng. 29(6) (1990) 672-675.
J.Y. Wang y D. E. Silva, App. Opt. 19(9) (1980) 1510-1518.
X. Yu, Y. Yao, Y. Sun y J. Tian, Optik 122 (2011) 1701-1706.
X. Yu, Y. Yao, Y. Sun, J. Tian y C. Liu, Optik 123 (2012) 792-795.
N.S. Mera, L. Elliott y D.B. Ingham, Inverse Problems in Engng 11(2) (2003) 105-121.
M. Rivera, J. Opt. Soc. Am. A 22(6) (2005) 1170-1175.
M. B. Bernini, A. Federico y G.H. Kaufmann, Appl. Opt. 48(36) (2009) 6862-6869.
X. Liu y Y. Li, Opt. Express 11(14) (2003) 1677-1688.
A. Lara, G. Sánchez, C. A Coello y O. Schutze, IEEE Trans. Evol. Comput. 14(1) (2010) 112-132.
K. Sindhya, K. Miettinen y K. Deb, IEEE Trans. Evol. Comput. 17(4) (2013) 495-511.
J. C. Wyant and K. Creath, Applied optics and optical engineering VOLUME XI, 1 Ed., Academic Press, Inc., San Diego, California., (1992), pp. 1-53.
J.J. Sánchez, J.H. Alonso y S. Vázquez, Opt. Eng. 45(10) (2005) 105605-1.
J. J. Sánchez y L.I. Barbosa, Opt. Eng. 54(2) (2015) 094102-1.
J. J. Sánchez, L.I. Barbosa, J. Vargas y F. Aguilar, Appl. Opt. 55(22) (2016) 5806-5813.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Juan Jaime Sánchez Escobar, Liliana Ibeth Barbosa Santillán, Jorge Castro Ramos, Luis Francisco Barbosa Santillán
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.