From Ramanujan to renormalization: the art of doing away with divergences and arriving at physical results
DOI:
https://doi.org/10.31349/RevMexFisE.18.020203Keywords:
Ramanujan summation, Casimir effect, renormalization, zeta-functionAbstract
A century ago Srinivasa Ramanujan --- the great self-taughtIndian genius of mathematics --- died, shortly after returning
from Cambridge, UK, where he had collaborated with Godfrey Hardy.
Ramanujan contributed numerous outstanding results to different
branches of mathematics, like analysis and number theory,
with a focus on special functions and
series. Here we refer to apparently weird values
which he assigned to two simple divergent series, $\sum_{n \geq 1} n$
and $\sum_{n \geq 1} n^{3}$. These values are sensible, however,
as analytic continuations, which correspond to Riemann's
$\zeta$-function. Moreover, they have applications in physics:
we discuss the vacuum energy of the photon field, from which one
can derive the Casimir force, which has
been experimentally measured.
We discuss its interpretation, which remains controversial.
This is a simple way to illustrate the concept of renormalization,
which is vital in quantum field theory.
References
https://mathworld.wolfram.com/
G. S. Carr, A Synopsis of Elementary Results in Pure and Applied Math-
ematics: Containing Propositions, Formulae, And Methods Of Analysis,
With Abridged Demonstrations, C. F. Hodgson and Son, London, 1886.
G. S. Hardy, S. Ramanujan F.R.S., Nature 105 (1920) 494–495.
http://ramanujan.sirinudi.org/html/published papers.html
https://www.qedcat.com/misc/ramanujans letter.jpg
S. Ramanujan, Second Notebook (unpublished), Chapter VI.
{authentically reproduced in Ref. [7], Chapter 8}
B. Candelpergher, Ramanujan summation of divergent series, Lectures
Notes in Mathematics, 2185 [hal-01150208v2], 2017.
https://www.youtube.com/watch?list=PLmNp3NTX4KXIqtjt2AKOr4
DUIxn64xj8G&v=jcKRGpMiVTw
R. Ayoub, Euler and the Zeta Function, The American Mathematical
Monthly 81 (1974) 1067–1086.
B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen
Grösse, in Monatsberichte der Berliner Akademie, November 1859.
D. J. Struik, A Concise History of Mathematics, Dover Publications,
(4th edition).
H. B. G. Casimir and D. Polder, The Influence of Retardation on the
London-van der Waals Forces, Phys. Rev. 73 (1948) 360–372.
H. B. G. Casimir, On the attraction between two perfectly conducting
plates, Proc. Kon. Ned. Akad. Wetensch. B 51 (1948) 793–795.
S. Ramanujan, Some properties of Bernoulli’s numbers, J. Indian Math.
Soc. 3 (1911) 219–234.
E. M. Lifshitz, The Theory of Molecular Attractive Forces between
Solids, Soviet Phys. JETP 2 (1956) 73–83.
S. K. Lamoreaux, Demonstration of the Casimir Force in the 0.6 to 6
μm Range, Phys. Rev. Lett. 78 (1997) 5–8.
U. Mohideen and A. Roy, Precision Measurement of the Casimir Force
from 0.1 to 0.9 μm, Phys. Rev. Lett. 81 (1998) 4549.
G. Bressi, G. Carugno, R. Onofrio and G. Ruoso, Measurement of the
Casimir Force between Parallel Metallic Surfaces, Phys. Rev. Lett. 88
(2002) 041804.
S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61
(1989) 1–23.
K. A. Milton, The Casimir effect: Physical manifestatios of zero-point
energy, World Scientific, 2001.
S. M. Carroll, The Cosmological Constant, Living Rev. Rel. 4:1 (2001)
–56.
A. Riess et al., Observational Evidence from Supernovae for an Accel-
erating Universe and a Cosmological Constant, Astron. J. 116 (1998)
–1038.
S. Perlmutter et al., Measurement of Ω and Λ from 42 High-Redshift
Supernovae, Astrophys. J. 517 (1999) 565–586.
J. Schwinger, Casimir effect in source theory, Lett. Math. Phys. 1 (1975)
–47.
J. Schwinger, J. DeRaad and K. A. Milton, Casimir Effect in
Dielectrics, Ann. Phys. (N.Y.) 115 (1978) 1–23.
K. Scharnhorst, On propagation of light in the vacuum between plates,
Phys. Lett. B 236 (1990) 354–359 [Erratum: Phys. Lett. B 787 (2018)
.
R. L. Jaffe, The Casimir Effect and the Quantum Vacuum, Phys. Rev.
D 72 (2005) 021301.
T. H. Boyer, Quantum Electromagnetic Zero-Point Energy of a Con-
ducting Spherical Shell and the Casimir Model for a Charged Particle,
Phys. Rev. 174 (1968) 1764–1774.
S. G. Mamaev and N. N. Trunov, Dependence of the vacuum expectation
values of the energy-momentum tensor on the geometry and topology of
the manifold, Theor. Math. Phys. 38 (1979) 228–234.
J. Ambjørn and S. Wolfram, Properties of the vacuum. I. Mechanical
and thermodynamic, Annals Phys. 147 (1983) 1–32.
I. E. Dzyaloshinskii, E. M. Lifshitz and L. P. Pitaevskii, The general
theory of van der Waals forces, Advances in Physics 10 (1961) 165–209.
J. N. Munday, F. Capasso and V. A. Parsegian, Measured long-range
repulsive Casimir-Lifshitz forces, Nature 457 (2009) 170–173.
M. P. Hertzberg, R. L. Jaffe, M. Kardar and A. Scardicchio, Attractive
Casimir Forces in a Closed Geometry, Phys. Rev. Lett. 95 (2005) 250402.
R. M. Cavalcanti, Casimir force on a piston, Phys. Rev. D 69 (2004)
G. H. Hardy and J. E. Littlewood, Contributions to the Theory of the
Riemann Zeta-Function and the Theory of the Distribution of Primes,
Acta Mathematica 41 (1916) 119–196.
S. W. Hawking, Zeta function regularization of path integrals in curved
spacetime, Commun. Math. Phys. 55 (1977) 133–148.
J. Polchinski, String Theory: Volume 1, An Introduction to the Bosonic
String, Cambridge Monographs on Mathematical Physics, 1998.
F. Toppan, Lecture Notes: String Theory and Zeta-function, CBPF-
MO-002/00, http://www.cbpf.br/∼toppan/mo00200.pdf
M. D. Schwartz, Quantum Field Theory and the Standard Model, Cam-
bridge University Press, 2014, Section 15.3.5.
B. Zwiebach, A First Course in String Theory, Cambridge University
Press, 2004, Section 12.4.
H. Hasse, Ein Summierungsverfahren für die Riemannsche Zeta-Reihe,
Math. Z. 32 (1930) 458–464.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Wolfgang Bietenholz
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the Revista Mexicana de Física E right of first publication with the work simultaneously licensed under a CC BY-NC-ND 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.